
Timing Driven Placement

Chapter 6

Timing Driven Placement

6.1 Introduction

The purpose of an electronic circuit is to perform a useful function for a set of signals.

An electronic circuit can be viewed as a black box which dynamically transforms a set of

inputs into a set of outputs. The transformation between an input and an output is known

as a transfer function h and is defined as

(6.1)

Normally, the signals are time varying voltages, although sometimes they may be time

varying currents.

An electronic circuit consists of components and wires. In the design process, wires

are considered perfect conductors, and all the connection points of the components con-

nected to a single wire are said to be at the same voltage. The time for a signal to propa-

gate through a perfect conductor is limited only by the speed of light1. However, in the

real world, conductors have finite conductance, capacitance, and inductance. In addition,

capacitive and inductive coupling exists between different conductors. These parasitic

devices limit the performance of electronic circuits and have serious ramifications for

placement and routing algorithms.

Since most integrated circuits process time varying voltage signals rather than current

signals, inductance parasitics may largely be ignored in the signal path. MOS (Metal

1. The speed of light in the given medium. The speed of light traveling on a printed circuit board is roughly
1/3 the speed of light in free space.

h t() output t()
input t()

--------------------------=

119

Timing Driven Placement

Oxide Semiconductor) digital circuits fall into this category. However, inductance parasit-

ics must be considered if the current is switched. For example, it is common for power and

ground signals to receive special treatment during placement and routing [33]. In this

chapter, we will focus on time varying voltage signals for MOS circuits.

The connection between two gates of a MOS digital circuit can be modeled using the

circuit in Figure 6.1. The signal propagates from the driver (output of a gate) to the load

(input of a gate). In the simplified circuit, the driver is a voltage source with source resis-

tance, and the load is a capacitor. The source resistance models the drive strength of the

output transistor; the smaller the resistance, the stronger the transistor can drive the line.

The load capacitor is equivalent to the gate capacitance of the MOS input transistors. The

wire which connects them is a distributed RC (resistance capacitance) network. The driver

and load are components; their values cannot be changed by the placement and routing

algorithms. However, the wire’s characteristics are determined by technology, and place-

ment and routing. The parasitic capacitance of a wire segment is approximately that of a

parallel plate capacitor. Its value is

(6.2)

Vdriver

Rdriver

Cgate

RCdistributed

Figure 6.1 Model for interconnection of two MOS gates.

driver
load

wire

C
εA
d

------ εlw
t

---------= =

120

Timing Driven Placement

where is the permitivity of silicon dioxide, l is the length, w is width, and t is the thick-

ness of the segment.

Since the width of capacitor is generally fixed to the minimum width design rule for

the routing layer, and the thickness is set by the technology, the capacitor’s value for a

given routing layer is proportional to the length of the wire, or

 . (6.3)

The resistance of a wire segment is given by

(6.4)

where is the resistivity of the material, and A is the cross sectional area. Sheet resistance

is defined as

(6.5)

where t is the thickness of the wire segment. Substituting, we arrive at

(6.6)

In both cases, the parasitic’s value increases with the length of the wire. The goal of

the placement and routing algorithm is to minimize the length of interconnections. For

some materials, such as aluminum, the resistivity of the material is small enough to

neglect the resistance of the wire for segment lengths encountered on the chip. For other

materials, such as polysilicon, the resistivity is large () and cannot be

neglected. In the first case, the distributed RC network simplifies into a single lumped

capacitor. However, in the second case, the distributed RC network may not be simplified

without losing accuracy. Since today’s circuits are generally interconnected using only

metal wire segments, we will concentrate on the simplified lumped capacitance model for

ε

C l∝

R
ρl
A
-----=

ρ

Rs
ρ
t
---=

R Rs
l
w
----⋅ Rs ⋅= =

Rs 20 Ωsquare 1–≈

121

Timing Driven Placement

interconnect in this chapter1.

Although zero length for all wires is an ultimate goal, it is impossible to achieve for

any nontrivial circuit. Instead, the placement and routing algorithms need to minimize

wire lengths on a set of critical signal paths. If the parasitic delays are large enough, the

circuit may not function for these paths. Other signal paths in the circuit may not be

affected by the addition of parasitic delays. In general, there is a lower bound and an

upper bound on the time that a signal may propagate from the input to the output

where the circuit still functions,

(6.7)

The delay from input to output can be decomposed into two pieces: component or gate

delay and parasitic delay. If the gate delay is subtracted from the total path delay, the time

bounds or slack for the wiring parasitics can be calculated.

(6.8)

Figure 6.2 shows an example of a digital logic circuit. There are three inputs (A, B, C)

and two outputs (D, E). The fanout of a gate is the set of gates whose input is connected to

1. Connections between layers known as vias also have resistance and capacitance. For most technologies,
they may be neglected. An exception is anti-fuse FPGA technology.

Tlb

Tub

Tlb tr Tub≤ ≤

T̂
lḃ

T̂ub, 
 

T̂lb tr T̂ub≤ ≤

A

B

C

D

E

Figure 6.2 Example circuit.

C1

C2

C3

C4

C5

C6

C7

122

Timing Driven Placement

the output of the gate. Similarly, the fanin of an input pin of a gate is the set of gates whose

outputs are connected to that input pin. The transitive fanout of a gate is defined recur-

sively by the repeated application of the fanout function. It is equivalent to the set of gates

reachable from the output; that is, a path exists from the output to any gate in the set. For

example, C4 is in the fanout of C1 whereas C4, C6, and C7 are in the transitive fanout of

C1. The transitive fanin is defined analogously except that it defines the set of gates reach-

able from an input. In Figure 6.2, the transitive fanin of C7 pin 3 is C5, C2, and C3.

The gate and wiring delays for this circuit may be represented using a timing graph as

shown in Figure 6.3. The timing graph is a weighted directed acyclic graph (dag). The

nodes of the graph represent the signal pins of the circuit. The edges of the graph connect

the pins. Each edge has a weight corresponding to the propagation delay. There are two

types of edges: internal and external. The internal edges are signal paths which exist

between pins of a gate. The weights of these edges are fixed by technology and device

physics. The external edges denote paths created by the signal network. The weight of

these edges depends on the length of the interconnect. The goal of the placement and rout-

ing algorithm is to satisfy the time bounds for all signal paths through the circuit.

A

B

C

D

E

Figure 6.3 Timing graph for example circuit of Figure 6.2. The nodes of the graph are the signal pins.
The edges of the graph connect the pins. There are two types of edges. The thick edges are signal paths
through the gates whereas the thin lines denote the signal nets.

123

Timing Driven Placement

Often the designer knows the time constraints between a primary input pin and a pri-

mary output pin (such as B and E in Figure 6.3) but does not know the gates or nets of the

paths between them. In Figure 6.3, there are three unique paths between pins B and E. The

longest time among the three paths will set the upper bound on the time delay. The shortest

time sets the lower bound. However, some of these paths may be logically or temporally

incompatible and are therefore, false paths. A timing constraint for a false path is mean-

ingless since the path can never be switched or sensitized. A false path unnecessarily con-

strains the placement problem.

For the example shown in Figure 6.4, three types of timing analysis are possible for

the upper bound. The first analysis uses a modified form of the PERT1 longest path algo-

rithm [61]. It simply adds the longest delays to find the worst case path regardless of the

logic state. In this case, the time delay is the sum of the two 20 ns delays. The second type

of analysis, known as static sensitization, checks the logic state of each path to see if it is

feasible. In the example, the inverter forces one mux to be in the select 0 state and one

mux to be in the select 1 state. This sets the maximum delay along the data path to be 30

ns. The select path is now the longest path with a delay of 39 ns. The third analysis known

as dynamic sensitization allows the logic states to change. It would discern the possibility

1. PERT is an acronym for “program evaluation and review technique.” This algorithm originated in opera-
tions research. It find the longest critical path in a job scheduling problem.

delay = 22

delay = 20

delay = 10 delay = 10

delay = 20

delay = 17

muxmux

0 0

11

Figure 6.4 Typical example of a false path. PERT analysis yields solid path. Static sensitization finds
the hatched path. Dynamic sensitization discovers that both paths may propagate together. From [7].

Select

In Out

124

Timing Driven Placement

for the input signal to propagate through the two 20 ns delays if both the input and select

line are switched at the same time. An algorithm has yet to be published which can guar-

antee to find the longest dynamically sensitized path. However, much progress has been

made in synthesizing circuits which avoid these problems [110][188]. The tightest known

upper bound on the true path delay is known as the viable path [147]. For most circuits, it

coincides with the longest statically sensitized path.

In this work, a PERT-like algorithm is augmented to understand rising and falling tran-

sitions. The user may remove any false paths by enumerating them in a file. This is similar

to the TA timing analyzer which allowed the user to add delay modifiers to indicate that a

path was not possible [91]. The false paths may be obtained by using external timing ana-

lyzers.

6.2 Previous Work

Many timing driven placement schemes have been proposed [8]. The previous work

can be divided into two categories: net-based [23][55][71][72][88][99][143][224][228]

and path-based algorithms [53][63][85][98][145][210][211][218][220]. In a net-based

algorithm, the timing delays are partitioned into constraints for the individual nets of the

critical path. Early systems used a critical weight for each net which influences the behav-

ior of the placement algorithm [23][55]. Dunlop et al. achieved acceptable designs by

updating the net weights in an iterative loop consisting of a placement, routing, and timing

analysis [55]. Burstein and Yousseff presented a hierarchical method which used timing

analysis to update the net weights. Another approach uses timing analysis to determine

precise bounds on the net delay and translates this information into constraints for the

lengths of all nets [88][241]. If the constraints are met during placement, the timing speci-

fications are guaranteed to be met. Recent systems use convex programming to translate

the timing constraints into a set of upper bounds for net wire lengths [71][72]. Another

method added net length constraints to the mincut placement technique [224].

125

Timing Driven Placement

The failure to consider the interactions between nets is a problem with net-based algo-

rithms. Minimizing the delay in one net may create an excessive delay in another. It is the

sum of the delay along a path which matters. Marek-Sadowska and Lin proposed the first

path-based placement algorithm [145]. They used timing analysis to determine weights for

the rectilinear distance facility location (RDFL) problem. These weights included a com-

ponent which models the path length between cell instances.

In order to obtain accurate timing behavior and achieve better global solutions, path-

based timing analysis must be performed dynamically during placement. Jackson and Kuh

used linear programming (LP) and a path-based model which considers internal cell

delays, interconnect, and pin capacitances to determine cell placement [98]. However, the

complexity of the resulting linear program restricts its use to small problems. Partitioning

must be performed to divide the placement problem into a manageable size for the LP

solver. In addition, the I/O cells must be fixed to find a feasible placement. Srinivasan

introduced a reduced forest of timing constraints to control the growth of timing equations

in a nonlinear program [211]. While this expedited the execution time compared with the

linear program and eliminated the need for an initial feasible placement, the cost function

used the squared wirelength metric rather than the Manhattan metric. The squared wire

length metric is known to be inferior [210]. Sutanthavibul and Shragowitz proposed a

hierarchical constructive placement algorithm which analyzed the M longest and shortest

paths to determine appropriate net weights [218]. This algorithm uses score functions

which are nonadditive functions of their arguments. This case has shown that finding a set

of M longest or shortest paths is NP-hard [243]. Sutanthavibul and Shragowitz resorted to

an approximation algorithm based on Asano’s algorithm which has a time complexity

 [5]. Hasegawa augmented force directed pairwise relaxation (FDPR) to

handle path constraints [85]. In this case, the paths must be explicitly supplied by the user.

O m mlog Mn+()

126

Timing Driven Placement

The use of timing driven placement with simulated annealing was first suggested for

gate arrays by de Forcrand et al.[63] but the paper did not mention whether the time con-

straints were incorporated into the cost function. Donath et al. used simulated annealing in

a hierarchical manner to place segments (the netlist is partitioned into segments) using

complete path delays [53]. Timing analysis was used to produce parameterized delay

equations for the paths. However, there was not an explicit limit on the number of delay

equations that could be generated (in principle, an exponential number of paths can be

generated), or a provision for handling false paths. The final solution quality depended on

the quality of the partitioning step. Swartz and Sechen added timing critical paths to the

simulated annealing cost function by summing the wire lengths of the nets in each critical

path [220]. The timing driven placement algorithms presented in Section 6.3 extend this

work.

6.3 Algorithm

We now present the algorithms which have been implemented in the TimberWolf

place and route system. TimberWolf supports the following types of timing constraints:

• critical path using wire length constraints.

• matched critical path using wire length constraints.

• critical path using timing constraints.

• matched critical path using timing constraints.

• critical path analysis using pin pair constraints.

• matched critical path analysis using pin pair constraints.

6.3.1 Critical Path Using Wire Length Constraints

The simplest form of a timing constraint is one on the total wire length of a user speci-

fied critical path. For each critical timing path, the user supplies an upper and lower bound

on the length of the path. The penalty assigned for a path p is the amount the length devi-

ates from satisfying the bounds:

127

Timing Driven Placement

(6.9)

where the length of a path p is the sum of the half-perimeter wire length of all the nets n in

the path:

(6.10)

The total penalty is just the sum over all the specified critical paths:

(6.11)

Since the simulated annealing algorithm ensures that the sum of the lengths of the

individual nets in the critical path meet the given bounds, there is no need for the user to

partition the path length between the individual signals of the path. Previously reported

systems have used net weights on individual nets in an attempt to achieve timing driven

placement. However, this is the first cell placement algorithm which features critical-path

driven placement. This method is superior to net weighting techniques because it over-

comes the partition problem and reflects more accurately the true timing constraints to be

satisfied.

6.3.2 Matched Critical Path Using Wire Length Constraints

On occasion, it is desirable to match the lengths of two paths. For example, the paths

from the bond pad to the differential input pair of an operational amplifier should be

matched to avoid offset errors. The user specifies a tolerance for the mismatch in path

length. In this case, we assign the penalty for a pair of paths p to be:

(6.12)

p()
length p() upperBound p()– if length p() upperBound p()>
lowerBound p() length p()– if length p() lowerBound p()<

0 otherwise





=

length p() Sx n() Sy n()+
n∀ p∈
∑=

PT P p()
p 1=

Np

∑=

p() match p() tolerance p()– if match p() tolerance p()>
0 otherwise




=

128

Timing Driven Placement

where the match is defined as

(6.13)

where and are the two paths comprising p.

6.3.3 Critical Path Using Timing Constraints

Although length constraints have been successfully applied to the timing design of

several microprocessors, this method fails to account for differences in drive strength. The

drive strength differences may be expressed using the driver source resistance. The propa-

gation time for a signal path must be redefined as follows:

The arrival time for a path p is the summation of all the net delays for the path.

(6.14)

The delay for a single net n is the sum of the intrinsic gate delay associated with the

driver of the net n, and the product of the equivalent driver resistance , and the total

load capacitance seen by the driver Cn.

(6.15)

The total capacitance for a net has two components: gate input capacitance and para-

sitic capacitance.

(6.16)

During placement, we can estimate the parasitic capacitance using the half-perimeter

bounding-box metric:

(6.17)

Substituting Equation 6.16 and Equation 6.17 into Equation 6.15, we get:

match p() length p1() length p2()–=

p1 p2

Ta Dn

Ta p() Dn
n∀ p∈
∑=

Tn

Rn

Dn Tn RnCn+=

Cn CGn
Cpn

+=

Cpn
CLx

Sx n() CLy
Sy n()+=

129

Timing Driven Placement

(6.18)

We can precompute the terms in the summation which do not depend on wire length

by defining:

(6.19)

This results in the following simplified equation for the arrival time:

(6.20)

The penalty due to timing for a path p is given by,

(6.21)

where the user has specified an upper (Tru) and lower bound (Trl) on the required arrival

times.

6.3.4 Matched Critical Path Using Timing Constraints

Matching critical paths when using the timing constraints is similar to the length con-

straint case. Again, the user specifies a tolerance for the mismatch in path delay. In this

case, we assign the penalty for a pair of paths p to be:

(6.22)

where the match is now defined as the difference in arrival times,

(6.23)

where paths and comprise the pair p.

Dn Tn RnCGn
Rn CLx

Sx n() CLy
Sy n()+[]+ +=

Kp Tn RnCGn
+[]

n∀ p∈
∑=

Ta p() Rn CLx
Sx n() CLy

Sy n()+[] Kp+
n∀ p∈
∑=

p()

Ta p() Tru p()– if Ta p() Tru p()>

Trl p() Ta p()– if Ta p() Trl p()<

0 otherwise





=

p() match p() tolerance p()– if match p() tolerance p()>
0 otherwise




=

match p() Ta p1() Ta p2()–=

p1 p2

130

Timing Driven Placement

6.3.5 Critical Path Analysis Using Pin Pair Constraints

Often the users do not know which paths are critical through the circuit. Instead, they

are concerned with the timing delays between the primary inputs and primary outputs of

the integrated circuit. Between a primary input pin and a primary output pin there may be

many unique paths. The shortest non-false path will set a lower bound on the time delay

whereas the longest non-false path will determine the upper bound. The timing delay has a

parasitic element due to the wiring between components as shown in Equation 6.20. Dif-

ferent placements yield different wiring and thus timing delays. A particular path between

two pins, for example, may be the longest path in one placement but the shortest path in

another placement. Therefore, it is important to optimize all non-false paths between the

two pins to ensure that timing specifications are met.

Algorithm Simulated-Annealing-With-Timing(M,K)

1 /* read list of false paths from user */

2 buildTimingGraphs

3 do
4 do
5 j = generate(i)

6 if accept(, T) then
7 i = j

8 until cost is in equilibrium

9 for each do /* P is the set of all pin pairs */

10 if then /* a nonzero lower bound exists */

11

12

13 discard all but the K costliest paths

14 reduce(T)

15 until cost cannot be reduced any further

Figure 6.5 Modified simulated annealing algorithm with timing analysis. After the cost has reached
equilibrium, a new set of timing constraints is generated. An upper bound of M such constraints are
generated for each pin pair.

FP{ } readFalsePaths()←
P Gn,()

∆C

s t,() P∈=

lb s t,() 0>
Ta{ } findMShortestPaths s t M, ,()←

Ta{ } findMLongestPaths s t M, ,()←

131

Timing Driven Placement

In order to achieve timing-driven placement with critical path analysis, we modify the

simulated annealing algorithm as shown in Figure 6.5. The parameter K controls the num-

ber of paths to be monitored during a single execution of the outer loop. It allows the user

to control the trade-off between accuracy and execution time. The first step of the algo-

rithm reads false paths designated by the user. In the second step, a timing graph for each

specified pin pair is constructed. After each iteration of the outer loop, a new set of paths

to be monitored is created in lines 9 through 13. For each specified pin pair, the M shortest

paths are found if a nonzero lower bound has been specified. In addition, the M longest

paths are found by negating the edge weights of the timing graph and running the M short-

est path algorithm. This is possible since the timing graph is a dag. These paths are now

treated as time critical paths and Equation 6.21 is used to determine the cost. In line 13, all

Algorithm buildTimingGraphs /* P is the set of all pin pairs; Gn is the netlist graph */

1 for each do /* pin i is the input; pin j is the output of the pin pair d */

2 /* calculate the transitive fanout for input pin i */

3 /* calculate the transitive fanin for output pin j */

4 /* nodes which are in a path from i to j must be in intersection */

5 for each vertex do /* use bfs of netlist graph to build delay graph */

6 /* initialization of the entire netlist */

7 /* initialize the set of nodes in the delay graph */

8 /* initialize the set of edges in the delay graph to the empty set */

9 /* initial a queue with initial element i */

10 while do /* breadth-first search of netlist graph */

11 /* look at the element at the front of the queue */

12 for each /* must have a delay path from u to v */

13 if and u is an output and and then
14

15

16 if then
17

18 Enqueue(Q,v) /* put v at the end of the queue */

19 Dequeue(Q,u) /* remove u from the front of the queue */

20 removeCycles /* remove any cycles so we have a DAG */

Figure 6.6 Algorithm which builds the delay graph between sets of input-output pin pairs.

P Gn,()
d i j,() P∈=

FOi transitiveFanout i()←
FIj transitiveFanin j()←
N FOi FIj∩←

u V Gn[] s{ }–∈
visited u[] FALSE←

V Gd[] i{ }←
E Gd[] { }←
Q i{ }←

Q { }≠
u head Q[]←

v Adj u[]∈
u N∈ v N∈ u v,() FP∉

V Gd[] V Gd[] v{ }∪←
E Gd[] E Gd[] u v,(){ }∪←

visited v[] FALSE=

visited v[] TRUE←

V Gd[] E Gd[],()

132

Timing Driven Placement

but the costliest K time critical paths are discarded. Figure 6.6 describes the algorithm

used to build the timing graphs for each of the specified pin pairs. The procedure is a mod-

ified breadth-first search algorithm (lines 5-19 inclusively). The algorithm prunes unnec-

essary nodes by admitting only nodes which are in the intersection of the transitive fanout

of the source pin and transitive fanin of the target pin (lines 2-4 inclusively). Only these

nodes can be reached from both source and target; hence, these nodes must exist on a path

between the source and target. In line 13, specified false paths are eliminated from the

graph. Cycles in the graph are detected and eliminated in line 20.

The transitive fanout algorithm is shown in Figure 6.7. It is simply a breadth first

search modified to search input pins. The transitive fanin procedure proceeds in a similar

manner from the input pin using the back edges of the graph.

The timing graph construction routine creates a directed acyclic graph (dag). It is

important that the graph be a dag; the dag’s special properties are exploited in the M short-

Algorithm transitiveFanout(s)

1 for each vertex do
2 /* initialization */

3 /* initialize fanout set to the empty set */

4 /* initial a queue with source */

5 while do /* breadth first search */

6 /* look at the element at the front of the queue */

7 for each /* must have a delay path from u to v */

8 if and v is an input then
9

10

11 Enqueue(Q,v)

12 Dequeue(Q,u)

Figure 6.7 Algorithm for calculating the transitive fanout of the input pin. The algorithm for
calculating the transitive fanin of the output pin is similar except that the queue is initialized with the
output pin in step 4 and in step 7 the back edges are traversed instead. In addition, in line 8 only the
outputs are visited.

u V Gn[] s{ }–∈
visited u[] FALSE←

FO { }←
Q s{ }←

Q { }≠
u head Q[]←

v Adj u[]∈
visited v[] FALSE=

FO FO v{ }+←
visited v[] TRUE←

133

Timing Driven Placement

est path algorithms. It allows the use of Dreyfus’s method to compute the M shortest paths

which has time complexity [54][128]. This is in contrast to Yen’s method

for general networks with time complexity [242].

O Mn nlog()

O Mn3()

Algorithm removeCycles

1

2 for each do
3 outputsOnly = TRUE

4 for each do
5 if n is not an output then outputsOnly = FALSE

6 if outputsOnly then /* detected a wired OR connection */

7 remove an edge between outputs that does not include source or target

8 else /* find the longest feedback connection */

9

10 for each do
11 if u is an output and v is an input then
12

13 if then

14

15

16 deleteEdge(edgeToDelete)

17 if then
18 removeCycles

Algorithm findCycles

1 for each vertex do /* initialize for depth-first search */

2

3 /* used in Algorithm DFS-Visit */

4 /* used in Algorithm DFS-Visit */

5 /* initialize cycles to the empty set */

6 DFS-Visit(s) /* depth-first search from source */

7 for each do /* examine each edge in turn */

8 if color[(u,v)] = GRAY then /* gray edges denote back edges */

9

10

11 return(cycles)

Figure 6.8 Algorithm for removing cycles from the graph.

V G[] E G[] s, ,()
cycles{ } findCycles V G[] E G[] s, ,()←

cycle cycles{ }∈

node n cycle{ }∈

largestJump 0←
edge u v,() cycle∈

startDiff startTime u[] startTime v[]–=

startDiff largestJump>
largestJump startDiff=

edgeToDelete u v,()←

cycles{ } ∅≠
V G[] E G[] s, ,()

V G[] E G[] s, ,()
u V G[]∈

color u[] WHITE←
π u[] NIL←

time 0←
cycles { }←

edge u v,() E G[]∈

cycle traceCycle u v,()←
cycles cycles cycle{ }∪←

134

Timing Driven Placement

Algorithm RemoveCycles insures that the timing graph is acyclic. The algorithm is

presented in Figure 6.8.The first step detects if cycles exist in the timing graph. Cycles in

the graph are found by performing a depth-first search from the source in order to charac-

terize the edges of the graph. Initially, all nodes are white. During the examination of the

node’s adjacency list, the node is colored gray. When all edges have been examined the

node is colored black. For completeness, the depth-first search algorithm is shown in Fig-

ure 6.9 [45]. The depth first search classifies edges as it encounters them. Each edge

 can be classified by the color of the vertex v that is reached when the edge is first

explored (line 4):

1. White indicates a tree edge,

2. Gray indicates a back edge, and

3. Black indicates a forward or cross edge.

We utilize the following lemma characterizing directed acyclic graphs [45].

Lemma 6.1

A directed graph G is acyclic if and only if a depth-first search of G does not yield

back edges.

Algorithm DFS-Visit(u)

1 /* white vertex u has just been discovered */

2

3 for each /* explore edge (u,v)

4 /* color the edge based on adjacent node color */

5 if then

6 /* set the predecessor field */

7 DFS-Visit(v) /* continue probing deeper */

8 /* blacken u; it is finished */

Figure 6.9 Depth-first search algorithm. Adapted from [45].

color u[] GRAY←
startTime u[] time time 1+← ←

v Adj u[]∈
color u v,()[] color v[]←

color v[] WHITE=

π v[] u←

olor u[] BLACK←

u v,()

135

Timing Driven Placement

Proof

(by contradiction) Suppose there is a back edge . Then vertex v is an

ancestor of vertex u in the depth-first forest. Thus, there is a path from v to u in G, and the

back edge completes the cycle. ■

(by contradiction) Suppose G contains a cycle c. We need to show that a depth-

first search of G yields a back edge. Let v be the first vertex to be found in c, and let

be the preceding edge in c. At the time , there is a path of white vertices

from v to u. By the white-path theorem (given below), vertex u becomes a descendant of v

in the depth-first forest. Therefore, is a back edge. ■

Theorem 6.1

In a depth-first forest of a directed or undirected graph G, vertex v is a descendant of

vertex u if and only if at step 2 in Figure 6.9, vertex v can be reached from u along a path

consisting of entirely white vertices.

Proof

See [45] for proof.

Observe that the gray vertices always form a linear chain of descendents correspond-

ing to the current calling stack of DFS-Visit. Searching always emanates from the deepest

gray vertex. An edge that reaches another gray vertex reaches an ancestor.

Returning to Figure 6.8, it now follows that cycles may be detected by searching for

gray edges classified after depth-first search. Whenever a gray edge is found, the cycle can

be traced by following the predecessor fields of a node until arriving back at the edge.

Each cycle is added to the set of cycles in line 10.

After the set of cycles is determined, each cycle is examined in turn. In lines 3 through

:⇒ u v,()

u v,()

:⇐

u v,()

startTime v[]

u v,()

136

Timing Driven Placement

7, removeCycles checks the special case of wired outputs1 found on buses. Here, the cycle

formed by output nodes on the same net may be broken by removing any edge that does

not connect to the source or target. The more general case of a cycle formed by signal

feedback is handled in lines 8 through 16. In this case, we search for an output pin con-

nected to an input pin which has the largest jump in , the time the pin was

first discovered. The field is incremented upon entering the depth-first

search routine. Nodes with consecutive start times are adjacent to another. Hence, a large

jump in between two nodes means a large distance (in terms of number of

edges) between them. Since we are seeking to break any feedback loop, the largest jump

between an output and an input pin is the correct edge to break the cycle. It is not sufficient

to remove the gray edges, for these edges may not be output to input connections.

Since we are guaranteed to obtain a directed acyclic graph, Dreyfus’s method to find

the M shortest paths may be used. Dreyfus’s method finds paths in which repeated nodes

are admissible paths in a general network. We seek paths without repeated nodes. Since

the graph is a dag, repeated nodes are not possible. If repeated nodes were to exist, it

would imply that the graph has a cycle, contradicting the assumption that the graph is acy-

clic.

The M shortest path algorithm is presented in Figure 6.10. It consists of two phases:

shortest path determination and path augmentation. The shortest path calculation can be

found in time using the DAG-SHORTEST-PATH algorithm (phase a). This is

optimal. In contrast, Dijkstra’s method (needed for an undirected graph) requires

[50]. The second phase yields M-1 additional paths using Dreyfus’s method. Dreyfus’s

method computes M shortest paths from the source to each of the other nodes of the

graph. Let equal the length of the mth shortest path from the source to the node u. We

define to be the number of paths in which is the final arc in the set of m

1. The set of output pins includes bidirectional and tri-state outputs.

startTime u[]

startTime u[]

startTime u[]

O V E+()

V2()

n 1–

du
m

n u v,[] u v,()

137

Timing Driven Placement

shortest paths from the source to node v. The (m+1)st shortest path from the source to node

v has some final edge . The length of this path from the source to u must be

. By minimizing over all possible choices of u, we obtain

(6.24)

In general, appears on the right hand side of Equation 6.24 only if the edge

 is the final edge in each of the 1st, 2nd,..., mth shortest paths from the source to

node v. Since is the final edge of the shortest path, it follows that the number of

edges in a shortest path to node u is one less than the number of edges in a shortest path to

v. Therefore, if the nodes are processed in the topological order, the value of will be

known when it is needed in the computation of .

Dreyfus’s method can be divided into two stages. Data structure initialization is per-

formed in the first stage. Each node has a priority queue which stores the incoming edges

classified by cost. In line 9, the distance is tested to see if it may enter the priority queue. If

the path has not yet been processed, its entry into the priority queue will be delayed until

Algorithm findMShortestPaths(s, t, M)

a /* First find the shortest path by using DAG-SHORTEST_PATH */

1 topologically sort the vertices of Gd

2 for each vertex do /* initialize the graph */

3 /* the distances are set to infinity */

4 /* the predecessor is set to none */

5

6 for each vertex u taken in topological sorted order do
7 for each vertex do
8 Relax(u,v,w)

b /* Find the M other shortest paths in O(Mnlogn) running time using Dreyfus’s Method */

9 Dreyfus_mpaths(, , M, s, t)

Figure 6.10 Algorithm for find the M shortest paths in an acyclic graph. Phase a finds the shortest
path in the dag while phase b augments the number of paths using Dreyfus’s method.

v V G[]∈
d1 v[] ∞←
π1 v[] NIL←

d1 s[] 0←

v Adj u[]∈

V Gd[] E Vd[]

u v,()

du
n u v,[] 1+

dv
m 1+ min

u
du

n u v,[] 1+ w u v,()+{ }=

du
m 1+

u v,()

u v,()

du
m 1+

dv
m 1+

138

Timing Driven Placement

the distance is known. The edge’s entry into the priority queue is delayed (and added to the

futureEdge queue) if

(6.25)

Algorithm Dreyfus_mpaths(V[G], E[G], M, s, t)

a /* initialize data structures */

1 for do
2

3

4 for to M do
5 for do
6 if then
7

8 else
9 if then

10 Enqueue(futureEdge[v],) /* delay added to heap until cost is known */

11 else
12 insertPriorityQueue(edgeHeap[v],)

b /* done initialization now perform longest path search */

14 for to M do /* M is the number of longest paths desired */

15 for each vertex v taken in topological sorted order do
16 while do /* costs for edge are now known */

17

18 insertPriorityQueue(edgeHeap[v],)

19 Dequeue(futureEdge[v],u)

20 if then
21

22 Relax-M(u,v,w)

23 /* increment number of paths for this edge */

24 if then /* delay is added to heap if necessary */

25 Enqueue(futureEdge[v],)

26 else
27 insertPriorityQueue(edgeHeap[v],)

28

Figure 6.11 Dreyfus’s M shortest path algorithm. Phase a initializes the data structures. Phase b finds
the M shortest paths from the origin. Edges may be put in the priority heap once the cost is known.

u V G[]∈
edgeHeap v[] buildPriorityQueue()←
futureEdge v[] { }←

m 2← du
m ∞←

v Adj u[]∈
π v[] u=

n u v,[] 1←
n u v,[] 0←

du
n u v,[] 1+ ∞=

du
n u v,[] 1+

du
n u v,[] 1+

m 2←

futureEdge v[] { }≠
du

n u v,[] 1+ head futureEdge v[][]←
du

n u v,[] 1+

edgeHeap v[] { }≠
du

n u v,[] 1+ ExtractMin edgeHeap v[]()←

n u v,[] n u v,[] 1+←
du

n u v,[] 1+ ∞=

du
n u v,[] 1+

du
n u v,[] 1+

pathm Trace-Back-From-Target t()←

n u v,[] 1+ m 1+=

139

Timing Driven Placement

since the (m+1)st path has yet to be calculated.

The second stage (lines 14-28) constitutes the core of Dreyfus’s algorithm. The nested

loops of lines 14 and 15, in conjunction with the Extract-Min operation of line 21, com-

bine to form the upper bound for the time complexity . Lines 16-19 add

edges which have been delayed to the priority queue. After the first iteration of the loop,

only one edge will be updated in lines 24-27. Finally, the mth shortest path is determined

by tracing back through the predecessor fields. The predecessor fields are assigned in the

relaxation routines shown in Figure 6.12. Observe that only one relaxation is done for

each node selected in line 15.

6.3.6 Matched Critical Path Analysis Using Pin Pair Constraints

Matching pin-pair delays when using the pin-pair constraints is similar to the previous

matched cases. Again, the user specifies a tolerance for the mismatch in pin-pair delays. In

this case, we assign the penalty for two pin pairs p to be:

(6.26)

where the match is now defined as difference in the arrival times,

O M n nlog⋅ ⋅()

Algorithm Relax(u,v,w)

1 if then
2
3

Algorithm Relax-M(u,v,w)

1 if then
2 if then
3

4

Figure 6.12 Relaxation routines.

1 v[] d1 u[] w u v,()+>
1 v[] d1 u[] w u v,()+←

π1
v[] u←

du
n u v,[] 1+ ∞≠

v
m du

n u v,[] 1+ w u v,()+>

v
m du

n u v,[] 1+ w u v,()+←
πm v[] u←

p() match p() tolerance p()– if match p() tolerance p()>
0 otherwise




=

140

Timing Driven Placement

(6.27)

where the and are all the paths between the two pin pairs.

In this case, there are constraints between the two sets of paths.

6.4 Results

The net length constraint algorithm has been used extensively within the industry.

Both the Intel 486 and Pentium1 microprocessors were designed using TimberWolfSC

with net length constraints.

Figure 6.13 shows a small circuit (50 cells) in which net lengths have been constrained

to a lower bound of 25 microns and an upper bound of 200 microns. This circuit is a

sequential counter in which equalizing net lengths will increase the frequency of opera-

tion. Figure 6.13a shows the results of simulated annealing placement without net con-

straints. Most nets have small wire lengths but several have lengths over 200 microns. In

Figure 6.13b, the distribution of nets converges to an average of 100 microns. Addition-

ally, there were no nets shorter than 25 microns. Several net lengths have remained

unchanged; these are the power and ground nets which connect to every cell. These net

constraints were entered to show that the algorithm is tolerant to infeasible constraints.

1. Pentium is a registered trademark of the Intel Corporation.

match p() max
i j,

Ta pi() Ta pj()–=

pi pj

O M2()

141

Timing Driven Placement

Legend

 average

 variance

0 100 200 300

1

2

3

4

5

6

7

8

9

10

11

12

13

0 100 200 300

1

2

3

4

5

6

7

8

Figure 6.13 Net distribution for small circuit. Figure a is placement without timing constraints. Figure
b is constrained placement.

Wire length in microns

N
um

be
r

of
 n

et
s

N
um

be
r

of
 n

et
s

142

Timing Driven Placement

Table 6.1 presents all of the critical paths for the MCNC benchmark circuit fract.

These paths were automatically detected using the pin-pair timing constraint algorithm;

user interaction was not required. Because it was a synchronous output, combinatorial

paths were not found to primary output pin W.

Table 6.1 Number of timing critical paths for MCNC benchmark circuit fract.

primary input
Number of paths to
primary output Z

Number of paths to
primary output W

reset - -

Phi1H - -

Phi2H - -

X 17 -

Clear - -

CD16 1 -

CD15 1 -

CD14 1 -

CD13 1 -

CD12 1 -

CD11 1 -

CD10 1 -

CD9 1 -

CD8 1 -

CD7 1 -

CD6 1 -

CD5 1 -

CD4 1 -

CD3 1 -

CD2 1 -

CD1 1 -

143

Timing Driven Placement

The most interesting pair of I/O pins are X and Z with 17 unique paths between them.

Table 6.2 compares the effect of varying M, the number of paths monitored, for the longest

path in the circuit. The results using the pin-pair timing algorithm are dramatic; the circuit

runs at least 34% faster! In monitoring the 17 paths, it was discovered that five paths were

much longer than the others. By monitoring just these five paths, the best results were

obtained. In this case, the longest timing path through the chip was reduced by more than

40%! This is because the algorithm was not distracted by the easily satisfiable paths.

A decrease in the time delay for the other paths was also realized. Figure 6.14 displays

the timing delay distribution. Notice that the average time delay in the circuit was reduced

from 115 nanoseconds to 37 nanoseconds, a savings of 67%.

Table 6.3 compares wire length, area after global routing, and execution times for each

case. When K is set to infinity and M is set to 1, the integrated circuit is 34% faster, with an

Table 6.2 Time for longest path for pin pair X to Z in nanoseconds .

run no constraints M=1 M=5 M=17

1 198 130 131 129

2 209 134 125 134

3 211 135 119 133

4 214 136 126 124

5 209 137 119 129

average 208 134 124 130

Table 6.3 Wire length and run time results for fract circuit .

no constraints M=1 M=5 M=17

wire length 57276 60691 63073 61209

area ()

run time (secs.) 670 801 966 1201

K ∞=()

K ∞=()

µm
2

1.56
6×10 1.60

6×10 1.68
6×10 1.58

6×10

144

Timing Driven Placement

area penalty of only 2.5% and an execution time increase of 16%. Generally, the area after

global routing correlates with the wire length after placement. For this case, dynamically

searching for the longest of the set of paths yields excellent results with minimal increase

in the execution time.

0 25 50 75 100 125 150 175 200 225 250

1

2

3

4

5

6

7

8

9

10

0 25 50 75 100 125 150 175 200 225 250

10

20

30

time in nanoseconds

Figure 6.14 Dramatic improvement in timing path distribution. The graphs plot number of paths at a
given time delay.

time in nanoseconds

nu
m

be
r

of
 p

at
hs

nu
m

be
r

of
 p

at
hs

No constraints

M = 1, K=∞
Legend

 average

 variance

145

Timing Driven Placement

To further reduce the run time, the number of time critical paths was pruned to the 5

costliest paths. Table 6.4 shows the delay of the longest path using pruning. Notice that the

longest delay path did not not change. In Table 6.5, we see that the area after global rout-

ing also remained the same. In addition, the cpu time was reduced.

Figure 6.15 shows the delay distribution for the struct benchmark. Notice that the

average delay in the circuit was reduced from 320 nanoseconds to 160 nanoseconds, a sav-

ings of 100%. In all cases, the user needs no knowledge of the time critical paths of the

circuit.

Table 6.4 Time for longest path for pin pair X to Z in nanoseconds using pruning.

run M=1, K= M=1, K=5

1 130 134

2 134 133

3 135 130

4 136 127

5 137 130

average 134 131

Table 6.5 Wire length and run time results for fract circuit using pruning.

M=1 M=1, K=5

wire length 60691 60322

area ()

run time (secs.) 801 750

∞

µm
2

.60
6×10 .60

6×10

146

Timing Driven Placement

6.5 Conclusions

We have presented six algorithms for controlling time delays in an integrated circuit.

A novel pin-pair algorithm controls the delay without the need for user path specification.

The algorithm has optimal time complexity. Using this algorithm, we presented results for

the MCNC benchmark circuit fract. This is the first report of timing driven placement

results for any benchmark circuit. The algorithm was able to increase the speed of the chip

by 34% at an area cost of only 2.5%.

0 50 100 150 200 250 300

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

5

10

15

20

25

30

35

40

45

50

No constraints M=5, K=∞

Figure 6.15 Timing results for the struct circuit.

