
v

List of Figures

Figure 1.1 Standard cell and macro cell methodologies.2
Figure 1.2 Phases of electronic system design. Adapted from [170].4
Figure 1.3 Mapping from logical or circuit level to physical level. In c) the labels

D, CLK, Q, and QB denote ports.6
Figure 1.4 Physical design stages.8
Figure 1.5 O-notation gives an upper bound for a function within a constant factor.

We write if there are positive constants n0 and c such that to the right of n0,
the value of always lies on or below [42].11

Figure 1.6 Examples of directed and undirected graphs. (a) A directed graph G =
(V,E), where V = {1,2,3,4,5,6} and E =
{(1,2),(2,2),(2,4),(2,5),(4,1),(4,5),(5,4),(6,3)}. Edge (2,2) is a self-loop. (b)
An undirected graph G = (V,E), where V = {1,2,3,4,5,6} and E =
{(1,2),(1,5),(2,5),(3,6)}. Vertex 4 is isolated. From [43].13

Figure 1.7 Spectrum of design methodologies for integrated circuits.15
Figure 1.8 Example of a standard cell design. Routing has not been performed. A

single bond wire is shown.17
Figure 1.9 Example of a gate array design. The routing is not shown.18
Figure 1.10 Example of a sea-of-gates design. The routing is omitted.19
Figure 1.11 Example of a macro cell design.20
Figure 1.12 Example of an island-style gate-array.21
Figure 1.13 Examples of a) sliceable and b) nonsliceable floorplans.24
Figure 1.14 Example of graph-based global routing for a 5 pin net. The thick line

shows the Steiner tree for this net.26
Figure 1.15 Example of plane-based global routing.27
Figure 1.16 An example of one layer maze routing. The width or height of each

square equals the grid size. The algorithm labels the grids in a breadth-first
manner. Each grid was visited at the step given by the label. There are sev-
eral paths from the source S to the target T avoiding obstacle O. Each path
has the same length (9) but the number of bends may vary. Two such paths
are shown.29

Figure 1.17 Example of a line-probe router [89]. Escape points are labeled E.30
Figure 1.18 Example channel and corresponding vertical constraint graph.31
Figure 1.19 Addition of a dogleg to the example channel. The new vertical con-

straint graph is shown.32
Figure 1.20 A channel routing example using two layers. This is not a left-edge al-

gorithm[234].32
Figure 1.21 An area route for a macro cell example using four layers.33
Figure 1.22 Order differences in 1D compaction. Steps a-d show x-compaction be-

fore y-compaction while steps e-h show y-compaction before x-compaction.
The final topology is different in the two cases. The hatched areas are on the
critical path. The labels denote the constraints. A centering move strategy
has been employed.36

Figure 2.1 The basic simulated annealing algorithm.41



vi

Figure 2.2 The acceptance function for the simulated annealing algorithm.42
Figure 2.3 Anticipated plot of the acceptance rate versus generated new configura-

tions.44
Figure 2.4 Typical measured acceptance rate versus generated new configurations

as obtained from experiments conducted on several industrial circuits,
showing the percentage of the run spent in each region of operation.45

Figure 2.5 Target acceptance rate versus iteration.47
Figure 2.6 Our simulated annealing algorithm. The cumulative measured accep-

tance rate during iteration I is ; the target acceptance rate at iteration I is .
The algorithm will execute a total of iterations.48

Figure 3.1 Recursive partitioning ignores connections in other levels. At the first
level, the design is partitioned into L and R. During the partitioning of L into
L1 and L2, pins 1 and 2 are assigned to partition L2. It is possible for pins 3,
4, and 5 to end up in partition R155

Figure 3.2 Recursive partitioning using terminal propagation. The addition of pin p
biases the placement of pins 3, 4, and 5.55

Figure 3.3 The minimum rectangle that encompasses this three-pin net.63
Figure 3.4 The bins for calculating the overlap penalty. The overlap penalty for bin

b is .65
Figure 3.5 The jump in total wire length after spacing (or compaction).66
Figure 3.6 Normalized total wire length versus final overlap penalty.67
Figure 3.7 Overlap penalty as function of time for the ami33 benchmark circuit.69
Figure 3.8 Results at the conclusion of stage 1 of the placement algorithm. The

darkest regions are cells and the lighter shaded regions are estimated wiring
areas.72

Figure 3.9 Placement after removal of overlap.72
Figure 3.10 The critical regions for the example circuit are shown as hatched rect-

angles for clarity.73
Figure 3.11 The channel graph for the previous example.74
Figure 3.12 An example of global routing on a channel graph. The thick line denotes

the global routing tree for a single net.75
Figure 3.13 The addition of routing tiles to the cells after global routing.76
Figure 3.14 The example in Figure 3.13 after compaction. New critical regions are

shown.76
Figure 3.15 Original channel graph (before compaction).77
Figure 3.16 Compaction results without channel graph constraints.78
Figure 3.17 The topology changes. The left channel graph is the original topology.

The channel graph on right is the topology after compaction.78
Figure 3.18 Compaction results using channel graph constraints.79
Figure 3.19 The placement topology is preserved. The left and right channel graphs

are isomorphic.80
Figure 3.20 Inaccurate modeling. TimberWolfMC version 1 overestimates the rout-

ing area needed for cell C1.81
Figure 3.21 Placement after global routing using original wire estimator. Notice the

gross inaccuracy in the estimation of the routing area for cell C1.81
Figure 3.22 Inaccurate wiring estimation leads to poor area efficiency. White space

around cells is unused area.82



vii

Figure 3.23 Placement after global routing using the statistical wire estimator.83
Figure 3.24 Accurate wiring estimation reduces the amount of unused area. This is

the minimum area placement for this example. The remaining white space
does not impact chip area.83

Figure 3.25 An example of pseudo pin placement. (a) Dark shaded areas are the
macro cells. The hatched rectangles are the critical regions. The thick solid
lines are channels and the dots denote a channel junction. (b) The dotted
lines denote the path the global router has determined for the nets. The dark
shaded areas are the macro cells.85

Figure 3.26 The local grid lines for a placement of macro cells86
Figure 3.27 An example of the final detailed routing.87
Figure 3.28 Final placement and routing of ami33 benchmark circuit.89
Figure 4.1 An example of a mixed macro / standard cell design.92
Figure 4.2 Flow chart of TimberWolf mixed macro/standard cell placement and

routing algorithm.94
Figure 4.3 Multiple versions of the standard cell core. User may specify additional

versions.95
Figure 4.4 Result of a partition for a mixed macro/standard cell example.96
Figure 4.5 Result of floorplanning.98
Figure 4.6 Tile construction and merging.99
Figure 4.7 The final standard cell row topology.100
Figure 4.8 The core region after standard cell routing.102
Figure 4.9 The example circuit after placement refinement.103
Figure 4.10 The final routing for the Texas Instruments circuit.105
Figure 5.1 Definitions for thermal cost.109
Figure 5.2 Definitions for isolation and proximity constraints.110
Figure 5.3 General net classification for crosstalk versus ANAGRAM’s net classi-

fication.113
Figure 5.4 Signal waveforms for net classification. Each signal has a period of ac-

tivity.114
Figure 5.5 Definitions for crosstalk penalty.115
Figure 5.6 Harris 5004 op-amp without any constraints. Solid bounding boxes de-

note output class and dashed lines denote input class. Bounding boxes
grossly overlap.116

Figure 5.7 Harris 5004 op-amp with crosstalk constraints. Solid bounding boxes de-
note output class and dashed lines denote input class. Crosstalk has been
completely eliminated.117

Figure 6.1 Model for interconnection of two MOS gates.119
Figure 6.2 Example circuit.121
Figure 6.3 Timing graph for example circuit of Figure 6.2. The nodes of the graph

are the signal pins. The edges of the graph connect the pins. There are two
types of edges. The thick edges are signal paths through the gates whereas
the thin lines denote the signal nets.122

Figure 6.4 Typical example of a false path. PERT analysis yields solid path. Static
sensitization finds the hatched path. Dynamic sensitization discovers that
both paths may propagate together. From [7].123

Figure 6.5 Modified simulated annealing algorithm with timing analysis. After the



viii

cost has reached equilibrium, a new set of timing constraints is generated.
An upper bound of M such constraints are generated for each pin pair.130

Figure 6.6 Algorithm which builds the delay graph between sets of input-output pin
pairs.131

Figure 6.7 Algorithm for calculating the transitive fanout of the input pin. The al-
gorithm for calculating the transitive fanin of the output pin is similar except
that the queue is initialized with the output pin in step 4 and in step 7 the
back edges are traversed instead. In addition, in line 8 only the outputs are
visited.132

Figure 6.8 Algorithm for removing cycles from the graph.133
Figure 6.9 Depth-first search algorithm. Adapted from [45].134
Figure 6.10 Algorithm for find the M shortest paths in an acyclic graph. Phase a

finds the shortest path in the dag while phase b augments the number of
paths using Dreyfus’s method.137

Figure 6.11 Dreyfus’s M shortest path algorithm. Phase a initializes the data struc-
tures. Phase b finds the M shortest paths from the origin. Edges may be put
in the priority heap once the cost is known.138

Figure 6.12 Relaxation routines.139
Figure 6.13 Net distribution for small circuit. Figure a is placement without timing

constraints. Figure b is constrained placement.141
Figure 6.14 Dramatic improvement in timing path distribution. The graphs plot

number of paths at a given time delay.144
Figure 6.15 Timing results for the struct circuit.146
Figure 7.1 Feedthrough resources must be taken into account when building Steiner

trees. A) Desired Steiner tree if Steiner point separation D is greater than av-
erage feed separation. B) Otherwise, only one Steiner point should be insert-
ed.153

Figure 7.2 Algorithm Overview154
Figure 7.3 The routing tiles for a mixed macro/standard cell design.155
Figure 7.4 Area minimization algorithm156
Figure 7.5 Switchable segment moves. Dashed lines indicate equivalent ports. Solid

lines denote the segment connecting two ports. States a, f, j, k, l are valid for
row-based circuits where the row area is a keep out area (gate-arrays and
standard cells). States j, k, and l will require feedthrough insertion. Addi-
tional states b, c, d, e, g, h, and i become valid when routing over the row is
permissible (sea-of-gates).157

Figure 7.6 Various Steiner trees for a 16 pin net. The Steiner tree may minimize
feedthroughs, wire length, or density.158

Figure 7.7 An example of a Steiner reconstruction move. a) the original minimum
wire length Steiner tree requires two feedthoughs, one in the longest row. b)
net segments which cross the longest row are removed. c) the reconstructed
Steiner tree only needs one feedthough and none in the longest row. Hence,
the longest row has been shortened.159

Figure 7.8 Cell instance may have multiple versions. Each instance has a unique
pinmap. The number of ports may differ between pinmaps but the number
of signals must remain constant.159

Figure 7.9 Definitions for multiple row feedthrough assignment. A multiple row



ix

feedthrough or freeway is shown at the left and a crossing is shown on the
right.160

Figure 7.10 Multi row feedthrough assignment algorithm. This algorithm assigns
both macro cell feedthoughs and FPGA freeways.161

Figure 7.11 Examples of a single row feedthrough. The feedthrough cell in the bot-
tom row has multiple feedthrough ports.162

Figure 7.12 Single row feedthrough assignment algorithm.163
Figure 7.13 Removal of cell overlap. a) After explicit feeds have been added. b) Af-

ter overlap has been removed.164
Figure 7.14 An example of the maze graph construction step for a small circuit. Fig-

ure a) shows the port locations and b) displays the resulting graph.166
Figure 7.15 Example of incremental maze routing. a) Original routes for nets and

their projection onto the graph. The maximum density is 4. b) If we reroute
net 1 using other regions, we reduce the density to 3. It does not help to re-
route nets 2 or 3 since their ports are at critical nodes. After reroute, all ports
are critical. Notice that if the new route does not contain any critical nodes,
we are guaranteed that the new route reduces the density by 1.167

Figure 7.16 Algorithm for incremental maze routing.168
Figure 7.17 Maze route rip-up and reroute. The broken line is a segment that crosses

the maximum density region. The segment is removed and the net is recon-
nected using the new route on the left which does not cross any maximum
density regions. Hence, the total density has been reduced by one. The re-
routed segment extends beyond the minimum bounding box.169

Figure 7.18 Vertical constraint loop minimization algorithm170
Figure 7.19 Example of freeway map.173
Figure 7.20 Example of a Steiner tree for a FPGA. Solid lines are freeways. Dashed

line is a multiple row output pin.174
Figure 8.1 The TimberWolf graphical interface.184
Figure 8.2 The graphics interface. twflow allows only one program to talk to the X

server at a time. All programs share the same graphic library functions.186
Figure 8.3 A portion of the twflow file.187
Figure 8.4 Software implementation methodology.189
Figure 8.5 Partial list of library modules and their function.190
Figure 8.6 Data structure customization. The data structure has an additional field

called numpins. The routine init_inst counts the number of signal pins for
each instance as the data structure is built. The <tw/structure_int.h> set the
default USER_INST field to the empty set. The user may redefine the fields
in <globals.h>. In this case, the field numpins has been added to the end of
the struct yinstrec definition in <tw/structure.h>.191

Figure 8.7 Our coding guidelines.192
Figure 8.8 Layout of dynamic memory. Allocation location field is only activated

during debug mechanism.194
Figure 8.9 Debug code discriminator. This function returns TRUE if debug label

has been entered in the debug tree (set true in the dbg file) and debug is en-
abled. Notice that the coding guidelines make the function easier to read. It
is evident that debugFlagS, debug_treeS, and firstTimeS are static vari-
ables; we will need to look at the top of this module to determine their def-



x

inition and initialization. TRUE and FALSE are macros. Yrbtree_insert is a
library module - rbtree (red-black tree). The testing of the routine name is
an example of defensive programming.195

Figure 8.10 Example of debug function instance. Debug label is “twsc/findcost”.
This small fragment warns if the incremental cost calculation differs from
an alternate method. This sanity check is enabled by the entering the line
“twsc/findcost 1” in the dbg file and using the -d option on the command
line to enable the debug mechanism. All debug code can be removed
through the DEBUG conditional compile switch.195

Figure 8.11 Software system methodology.196
Figure 8.12 Testing methodology.198


