
Introduction

Chapter 1

Introduction

Today’s rapidly increasing technological advances are due partly to the design and

production of low-cost, highly reliable integrated semiconductor circuits. Indeed, inte-

grated circuits have been incorporated into a plethora of common consumer goods ranging

from computer controlled automobile ignition systems to video cassette recorders. The

complexity of integrated circuits (ICs) in consumer and computer applications has

increased exponentially. As the demand increases for integrated circuits, time-to-market

becomes critical; technology is evolving so quickly that design cycle time has now

become a major consideration.

To reduce the design cycle time, computer programs have been applied. Such com-

puter programs are known as computer aided design (CAD) tools which increase the pro-

ductivity of the integrated circuit designer. In fact, integrated circuits have become so

complex that it is now impractical to design without using the computer. Computer aided

design has successfully reduced the time of the physical design (layout) phase, the place-

ment and interconnection of the transistors which constitute the integrated circuit. Today’s

CAD tools primarily focus on strictly digital circuits. One common approach is to use a

reusable library of predefined functions or standard cells whose specifications have been

fully characterized as a basis for the implementation of the design. These standard cells

are arranged in rows; the goal of the CAD tool is to place and interconnect these cells in

such a way as to minimize the size of the integrated circuit. The size of an integrated cir-

cuit directly affects its cost. A smaller integrated circuit yields two major benefits. First,

should a defect arise on the silicon wafer during processing, it is less likely that a single

2

Introduction

chip will intersect that defect. Second, a smaller IC will increase the number of chips for a

given wafer size [142].

Another method is to design using hand-crafted collections of interconnected transis-

tors known as macro cells as the basis of the design. In this case, the requirement for the

macro cells to be arranged in rows is not necessary. Hence, the density of the transistors

(number of interconnected transistors per unit area) for the macro cell design methodology

is greater than the standard cell methodology, but since they are generally not reusable

from one design to another, the time necessary to build each of the macro cells is costly.

Figure 1.1 shows the two design methodologies.

Figure 1.1 Standard cell and macro cell methodologies.

Current CAD tools are tailored for one methodology or the other. None have been

developed for the mixed macro/standard cell topologies. With the recent introduction of

module (cell) generator programs, the design time bottleneck for large regular array struc-

tures such as random access memory (RAM), read-only memory (ROM), and programma-

ble logic arrays (PLAs), has been removed. Therefore, it now is advantageous to pursue a

mixed approach.

The current physical design CAD tools do not understand analog circuits. Analog cir-

cuits process continuously varying signals (real world signals) as opposed to the discrete

binary levels of digital circuits. Analog circuits have the additional problems of noise,

Standard cell design style Macro cell design style

3

Introduction

thermal differences in transistors, and resistive and capacitive parasitic effects, which

affect circuit performance. Automatic IC design has existed for only digital circuits. A

method for handling the many analog constraints does not exist. This deficiency becomes

increasingly important as whole systems are integrated on a chip. The interface to the out-

side analog world will need to be accommodated.

Further, the assurance that the circuit will function after placement and interconnection

is not guaranteed using the current CAD tools. Placement and interconnection influence

the time constraints of the signals of the circuit. Current tools ignore the timing ramifica-

tions during the layout process. The designer often has to make many alterations in order

for the circuit to meet specifications. It is essential that tomorrow’s tools understand tim-

ing constraints if the design cycle time is to shorten. These problems will be addressed in

this thesis.

4

Introduction

1.1 Background

In order to put the physical design stage into its proper framework, the entire design

process for a typical integrated circuit is shown in Figure 1.2. Backtracking and iteration

are performed until design goals are achieved for each individual stage. The input to the

physical design stage is a structural representation describing the interconnection of phys-

ical components. The output of the physical design stage contains the geometric informa-

tion to perform fabrication of the integrated circuit. Physical components may be defined

requirements

behavioral description

structural representation

structural representation

physical representation

functional integrated circuit

specifications

Design Specifications

Functional Design

Logic Design

Circuit Design

Physical Design

Fabrication and Test

Figure 1.2 Phases of electronic system design. Adapted from [170].

5

Introduction

at any of three levels: the device level, the cell level, or the module level. The device level

is the lowest level; it describes the physical devices such as transistors, resistors, and

capacitors. The cell level describes a small collection of devices previously intercon-

nected, and with geometric data determined at lower stages of the hierarchy. The cell has

previously completed the physical design stage at a lower level of the hierarchy. Examples

of cell level descriptions are logic gates such as AND gates, or flip-flops, as well as analog

subcomponents such as single stage op-amps. The highest level or module level contains

large collections of devices which too have been physically defined earlier. Examples are

microprocessors, PLAs, RAMs, and ALUs.

The structural description of the physical components and how they are interconnected

is known as a netlist. The netlist from the logic or circuit phase contains references to

physical components known as cell instances and physical interconnections known as net-

work signals. Network signals are also known as nets or signals for short. Throughout, we

will use the three terms interchangeably. Figure 1.3 shows an example of the transforma-

tion from the circuit level to the physical level. At the circuit level, the netlist may be

either a schematic or a textual representation. A schematic consists of symbols denoting

the physical components and lines denoting the signals. The point where a signal connects

to a component is known as a terminal pin. Other names for terminal pins include I/O, pin,

and terminal. Figure 1.3a shows the schematic for a one-bit ripple counter. In this figure,

“Flipflop” is an instance, “Feedback” is a signal, and “CLK” is a pin. In the textual repre-

sentations, a cell instance is listed followed by its signals. The signals are ordered accord-

ing to their position at a lower level of the hierarchy. For example, in Figure 1.3b the

signal “Feedback” of instance “1” is connected to pin “D” of cell type “FlipFlop”. In the

example shown, both the schematic and the text describe the same netlist.

6

Introduction

Figure 1.3c shows the transformation to the physical level. In the figure, hatched

regions are interconnection wires or interconnect, wires connecting the physical compo-

nents. With the absence of transients and the neglect of resistance effects, wires maintain a

constant voltage. Wires are fabricated by depositing various materials on the silicon wafer

or substrate, usually polysilicon or a metal such as aluminum.

Materials are deposited sequentially on the substrate using photolithography [148].

Photolithography uses photomasks to define areas on the silicon substrate where the mate-

rial will be deposited. Each deposition is known as a layer. Layers may loosely be divided

into two groups: device layers and routing layers. Device layers such as diffusion are used

to create physical devices. Routing layers such as metal are used to interconnect the

Flipflop
CLK

QB

Phase1

Feedback

Out

Feedback

Phase1

Out

Feedback

D

CLK

Q

Q

QB

QBQB

D

D

INSTANCE 1 Flipflop

Phase1, Feedback, Out, Feedback
.
.
.

CELL FlipFlop

CLK, D, Q, QB

Flipflop

QD

Textual RepresentationSchematic Representation

Physical Level

Logical or
Circuit Level

Figure 1.3 Mapping from logical or circuit level to physical level. In c) the labels D, CLK, Q, and QB
denote ports.

a) b)

c)

7

Introduction

devices. Some layers, such as polysilicon, may be used for both purposes. The number and

types of layers are defined by the fabrication technology. Routing layers are electrically

isolated and may cross freely without shorting.

The electrical characteristics of the layer determine the current carrying capacity and

the length the interconnection can extend before the signal degrades. For example, polysil-

icon has a high sheet resistance and can only be used for short interconnection distances

whereas aluminum has a lower sheet resistance and is suitable for longer interconnection

distances. Early technologies only had two layers of wires, typically one polysilicon layer

and one aluminum layer. Today’s technologies use up to four metal layers for interconnec-

tion. The CAD tools must comprehend the material characteristics of each interconnect

layer in order to produce a functional design.

The point where the wire connects to a component is known as a port. A circuit pin

may have many physical ports, some of which may be electrically equivalent. In Figure

1.3c, there are nine ports for the four pins described in Figure 1.3a or Figure 1.3b. For

example, pin QB has three ports, only two of which need to be interconnected. The other

port is electrically equivalent and may be connected based on area considerations. The

point where two interconnection layers join is known as a via or contact.

Each layer in the fabrication technology has a set of guidelines known as design rules.

The design rules specify fabrication constraints on each of the layers. Generally, each

layer has a minimum required width and spacing. There also may be rules between two

layers. Design rules are changing frequently as fabrication technology is advancing. It is

therefore necessary for the physical layout process to be design-rule independent since

time-to-market is critical.

8

Introduction

1.1.1 Algorithmic Complexity

The transformation from circuit to physical is a difficult task, and one that is normally

subdivided into simpler steps as shown in Figure 1.4. In fact, the subproblems are

extremely difficult and nearly impractical. For example, suppose we want to solve the

placement stage optimally. The placement stage determines the position of the physical

components within the IC. If we place n equal size cell instances using a brute force tech-

nique that tries every possible placement permutation, we will examine n! different place-

ments. The function n! grows extremely fast. For example, for n=69, . Even

using a computer that is a trillion times faster than the fastest computer on earth, it would

Figure 1.4 Physical design stages.

netlist

Floorplanning

Placement

Global Routing

Detailed Routing

Compaction/Spacing

physical representation

Physical Design

Partitioning

Verification

n! 10
100>

9

Introduction

take longer than the age of the universe to compute the result! Modern circuits have tens of

thousands of components. Clearly, brute force techniques will not suffice. We must use algo-

rithms which run in reasonable execution time. We must look for efficient algorithms or algo-

rithms whose worst-case running time is bounded by a polynomial function of the input size

[42][134][222].

complexity n=20 n=50 n=100 n=200 n=500 n=1000

1000n* 0.02 sec 0.05 sec 0.1 sec 0.2 sec 0.5 sec 1 sec

* 0.09 sec 0.3 sec 0.6 sec 1.5 sec 4.5 sec 10 sec

* 0.04 sec 0.25 sec 1 sec 4 sec 25 sec 2 min

* 0.02 sec 1 sec 10 sec 1 min 21 min 2.7 hr

0.04 sec 1.1 hr 220 days 125 cent

0.0001 sec 0.1 sec 2.7 hr

1 sec 35 yr

58 min

Table 1.1 Running times as a function of input size. One step takes one microsecond. Asterisks denote
polynomial time algorithms [222].

time
complexity 1 sec

(1.7 min) (2.7 hr) (12 days) (3 yrs) (3 cent)

1000n*

*

*

* 46

22 36 54 79 112 156

59 79 99 119 139 159

19 26 33 39 46 53

12 16 20 25 29 33

Table 1.2 Maximum size of a solvable problem. Asterisks denote polynomial time algorithms [222].

000nlgn

100n
2

10n
3

n
lgn

5
8×10 cent

2
n 3⁄

3 10
4× cent

2
n

3 10
4× cent

3
n

2 10
9× cent

10
2
sec 10

4
sec 10

6
sec 10

8
sec 10

10
sec

10
3

10
5

10
7

10
9

10
11

10
13

000nlgn 1.4 10
2× 7.7 10

3× 5.2 10
5× 3.9 10

7× 3.1 10
9× 2.6 10

11×

100n
2

10
2

10
3

10
4

10
5

10
6

10
7

10n
3

2.1 10
2× 10

3
4.6 10

3× 2.1 10
4× 10

5

n
lgn

2
n 3⁄

2
n

3
n

10

Introduction

In order to quantify program execution times, asymptotic time complexity has been

developed. The constants of the function describing the program’s running time are

ignored. This simplifies the analysis and ignores the differences in particular machine

implementations. For large problem sizes, the relative merit of two algorithms can be

determined from the asymptotic growth of the execution time as a function of input size,

independent of any constants. Table 1.1 shows the running times for various time com-

plexities. Notice as the problem size increases, polynomial-time algorithms gradually

become unusable whereas nonpolynomial-time algorithms abruptly degenerate. Table 1.2

shows the maximum size of a solvable problem for a given algorithm. None of the non-

polynomial algorithms can solve a problem larger than 160 if we allocate three centuries

to solve the problem. Even higher order polynomials such as are not efficient for

solving the large problems associated with very large scale integrated circuits (VLSI).

Hence, the goal of the CAD tool developer is to design low order polynomial algorithms

for solving the physical layout problem.

In addition to time resources, programs require memory resources to store intermedi-

ate results as well as the final answer. The space complexity of a program is the rate at

which the memory resources grow as a function of the input size of the problem. We seek

algorithms that are linear in space complexity.

We will use “big-O” notation to define the asymptotic upper bound for time complex-

ity functions. O-notation gives an upper bound of a function within a constant factor. More

formally: For a given function we denote by the set of functions

: there exist positive constants c and such that

 for all . (1.1)

10n
3

g n() O g n()()

O g n()() f n(){= n0

0 f n() cg n()≤ ≤ n n0 }≥

11

Introduction

For example, and . Figure 1.5 shows the

intuition behind O-notation. All algorithms will be described using O-notation.

Most of the layout problems are extremely difficult to solve exactly; they have been

shown to belong to the class of nondeterministic polynomial (NP) time complexity. NP

problems have the characteristic that given a proposed solution to a problem, the solution

can be verified in polynomial time1. However, the problems seem to have an exponential

number of possible solutions and therefore seemingly run in exponential time. If we could

build a nondeterministic computer that could guess the correct path to the solution at every

decision in the algorithm in polynomial time, all NP problems could be solved efficiently.

Unfortunately, such a computer does not exist. We say “seems to run in exponential deter-

ministic time” since no one has been able to prove a superpolynomial-time lower bound.

Whether NP belongs to P (the class of polynomial algorithms) is one of the great unan-

swered questions of computer science [73].

An important subset of NP problems is the class of NP-complete problems. Any NP

problem can be transformed into another NP-complete problem in polynomial time.2 If

1. More formally, an algorithm or language L belongs to NP if and only if there exists a two-input polyno-
mial-time algorithm A and a constant c such that

 there exists a certificate y with such that .

2. An algorithm or language L is NP complete if

a) , and

b) for every (means there is a polynomial time transformation from to L).

1000n
3

O n
3

 
 

= 2
n

1000n+ O 2
n

 
 

=

n0

f n()

cg n()

Figure 1.5 O-notation gives an upper bound for a function within a constant factor. We write
if there are positive constants n0 and c such that to the right of n0, the value of

always lies on or below [42].
n() O g n()()=

f n() g n()

n

L x{ 0 1,{ } *
:∈= y O x

c
 
 

= A x y,() 1 }=

L NP∈
L' pL≤ L' NP∈ p≤ L'

12

Introduction

any NP-complete problem is polynomial-time solvable, then all NP problems can be

solved in polynomial time. This would mean that P=NP. On the other hand, if it can be

shown that any NP problem is not polynomial time solvable, then all NP-complete prob-

lems are not polynomial time solvable [46]. Most theoretical computer scientists believe

that because no one has found a polynomial time solution for any of the many NP

problems. If a problem has been determined to be NP-complete, it is likely that this prob-

lem is intractable or that no polynomial-time algorithm exists. In this case, it is important

to develop fast approximation algorithms and heuristics to solve the problem rather than to

try to find a fast exact algorithm.

1.1.2 Graph Theory

Many of the physical design subproblems can be transformed into graph problems in

which a solution is known. Graphs are one of the fundamental structures of discrete math-

ematics. A graph G has two ingredients: a set of nodes or vertices V, and a set of arcs or

edges E that connect the nodes. A graph G = (V,E) may either be directed or undirected. In

a directed graph, the edge set E consists of ordered pairs of vertices (u,v) where u, .

For directed graphs, self-loops (edges from a vertex to itself) are possible. An undirected

graph has unordered pairs of vertices for its edges. Graphs may be represented symboli-

cally. Vertices are denoted by circles or dots. Directed edges are represented by lines with

arrows whereas undirected edges are simply drawn as lines. Figure 1.6 shows examples of

P NP≠

v V∈

13

Introduction

directed and undirected graphs. We now will present some graph definitions. If (u,v) is an

edge in a graph G = (V,E), we say that vertex v is adjacent to vertex u. In an undirected

graph, the degree of a vertex is the number of edges incident on it. In a directed graph, the

out-degree of a vertex is the number of edges leaving the node, and the in-degree is the

number of edges entering it. A path of length k from a vertex to vertex is a sequence

of vertices (, ,...,) such that for i = 1, 2,..., k-1. The path contains the

vertices , ,..., and the edges , ,..., . The length of the path is

the number of edges in the path. A path is simple if all of its vertices are distinct. If there is

a path from a vertex u to a vertex v, then v is reachable from u. An undirected graph is

connected if every vertex is reachable from every other vertex and disconnected other-

wise. In a directed graph, a path forms a cycle if and the path contains at least one

edge. The cycle is simple if , ,..., are all distinct. In an undirected graph, a path

forms a cycle if and , ,..., are distinct. A graph with no cycles is acyclic.

Each edge of a graph may be given a property known as a weight.

Several kinds of graphs are given special names. A complete graph is an undirected

graph in which every pair of vertices is adjacent. A bipartite graph is an undirected graph

in which V can be partitioned into two sets and such that every edge has one end in

 and one end in . An acyclic, undirected graph is a forest, and a connected, acyclic,

2 2

4 5

3

6

1 13

654

Figure 1.6 Examples of directed and undirected graphs. (a) A directed graph G = (V,E), where V =
{1,2,3,4,5,6} and E = {(1,2),(2,2),(2,4),(2,5),(4,1),(4,5),(5,4),(6,3)}. Edge (2,2) is a self-loop. (b) An
undirected graph G = (V,E), where V = {1,2,3,4,5,6} and E = {(1,2),(1,5),(2,5),(3,6)}. Vertex 4 is
isolated. From [43].

v1 vk

v1 v2 vk vi vi 1+(,) E∈

v1 v2 vk v1 v2(,) v2 v3(,) vk 1– vk(,)

v1 vk=

v1 v2 vk 1–

v1 vk= v1 v2 vk 1–

V1 V2

V1 V2

14

Introduction

undirected graph is a tree. A directed acyclic graph is called a dag for short.

is a subgraph of if and . All of the edges of a planar graph can

be drawn in the two dimensional plane without crossing. Two other types of graphs are

multigraphs and hypergraphs. A multigraph is similar to an undirected graph but may

have both multiple edges between vertices and self-loops. A hypergraph is like an undi-

rected graph, but each hyperedge, rather than connecting two vertices, connects an arbi-

trary subset of vertices. Two graphs and are isomorphic if there

exists a bijection (one-to-one correspondence) such that if and only

if . In other words, the vertices of G can be relabeled to be the vertices

of while maintaining the corresponding edges in G and .

When describing graph algorithms, we shall use n to denote the number of vertices and

m to denote the number of edges. A graph is dense if m is large compared to n and sparse

otherwise.

1.2 Phases of Physical Design

1.2.1 Design styles

Before the start of the physical design stage, the designer must choose the technology

and layout methodology for the design. A technology is a particular integrated circuit fab-

rication process. The layout methodology or design style determines the construction of

photomasks. Technologies are normally defined by the minimum feature size (typically

the smallest allowable layer width), the number and type of routing layers, and the types

of devices possible for the process. For example, in a 1 double level metal CMOS

technology, the feature size is 1 , two metal layers are available for interconnection,

and CMOS (Complementary Metal Oxide Semiconductor) transistors are the semiconduc-

tor devices available.

G' V' E'(,)=

G V E(,)= V' V⊆ E' E⊆

G V E(,)= G' V' E'(,)=

f:V V'→ u v,() E∈

f u() f v(),() E'∈

G' G'

µm

µm

15

Introduction

The design methodology is the physical design synthesis process. The physical layout

of a design may be handcrafted or constructed using CAD autolayout tools. Layout may

be entirely performed by the integrated circuit designer or divided between the IC

designer and the system’s designer. Figure 1.7 shows the spectrum of integrated circuit

design methodologies. Generally, designs at the extremes of the spectrum are created

solely by the integrated circuit manufacturer, whereas the semicustom or application spe-

cific integrated circuit (ASIC) designs in the center of spectrum are created in two stages.

In the first stage, the entire design processes for the device and cell levels are performed

by the integrated circuit manufacturer. In the second stage, a systems designer or end-user

completes the design. The completed design is then returned back to the IC manufacturer

for fabrication. Since the lower levels of the physical hierarchy are predesigned by the IC

manufacturer, the systems designer is able to design entire systems quickly, and thereby

reduce time-to-market. Standard cell, gate array, and sea-of-gates arrays are all ASIC

design methodologies.

All physical designs, from custom to automatic layout, may be characterized by three

basic geometric styles. The three basic geometric styles are: row-based (standard cell),

building-block (macro cell), and mixed (standard/macro cell).

custom semicustom (ASICs) programmable logic

gate array

sea-of-gates

Programmable Array Logics
(PALs)

user-programmable specifications

lower performance

rigid specifications

higher performance

standard cell

Figure 1.7 Spectrum of design methodologies for integrated circuits.

Programmable
standard parts

Field Programmable
Gate Arrays (FPGAs)

16

Introduction

Each style may be implemented with different methodologies. The row-based style

may use the standard cell, gate array, sea-of-gates (SOG), or row-based field programma-

ble gate array (FPGA) design methodologies. The building block style may be imple-

mented with island-style gate-arrays or macro cells. By abutment, the cell instances in the

row-based style can share power and ground signals implicitly yielding area savings. Gen-

erally, the height of an individual cell is fixed by the largest cell height of the library lead-

ing to area inefficiency1. The building block style needs to have power and ground signals

routed explicitly but each of the cells may be individually optimized. Individual cell opti-

mization gives the largest area savings; hence, the building block style is generally more

area efficient than the row-based style.

The most flexible row-based methodology, the standard cell methodology, programs

all layers at fabrication. Since all layers including diffusion layers are fabricated, the loca-

tion, size, and the number of transistors of the cells are not fixed at the second stage of the

ASIC physical design process. If desired, the system’s designer can customize the stan-

dard cells for a particular design. In the past, such customization would slow the design

cycle reducing the advantage of the predefined library. Recently, procedural standard cell

libraries have been developed which automatically optimize the layout of standard cells

[176][177]. These procedural library CAD tools generate customized physical standard

cells from symbolic topological descriptions enabling systems engineers to complete the

physical design for the device and cell level instantly.

Another advantage of programming all layers is the ability to add more area-efficient

macrocells. Automatic module generators exist for building many useful logic functions

including ALUs, PLAs, RAMs, and ROMs [219]. Using procedural standard cells and

module generators increases the standard cell design performance substantially with a

1. This problem can be reduced somewhat by using a channel router which can handle a variable height
channel.

17

Introduction

minimal increase in design time. The increased performance and area savings make mixed

standard/macro cell designs very desirable.

Figure 1.8 shows an example of a standard cell design. The integrated circuit can be

divided into regions, the core region (area inside dotted square) and the I/O region (area

outside). The connections to the outside world (the package terminal pin) to the integrated

circuit are made using a bond pad cell. Generally, the bond pad is connected to the pack-

age pin ultrasonically using fine gold wire [148]. The regions between the standard cell

rows are routing regions known as channels. In the standard cell methodology, the heights

of these channels are not fixed but rather determined by the necessary routing area.

One disadvantage of the standard cell methodology is cost. Performing all of the pho-

tolithography steps costs time and money. While programming all layers leads to design

Figure 1.8 Example of a standard cell design. Routing has not been performed. A single bond wire is
shown.

bond pad cell

Routing region (channel)

standard cell

core region

I/O region

bond pad

bond wire

18

Introduction

flexibility, it requires unique photomasks for each design. None of these photomasks can

be used for any other future designs. In addition, any equipment developed to test the IC

cannot be shared over designs. The gate array methodology tries to alleviate this problem

by allowing the systems designer to only customize the interconnect layers. All transistor

and device levels are prefabricated by the IC manufacturer. Instead of the ten to twenty

photomasks required by the standard cell methodology, gate arrays need only three to

seven interconnect photomasks to program the design. After the systems designer com-

pletes the second phase of the design, the IC manufacturer needs only to process the inter-

connect layers, saving up to two weeks of fabrication time. In addition, the IC

manufacturer can mass produce the unprogrammed gate arrays known as base arrays and

take advantage of the economies of scale. This reduces the lead time and cost for manufac-

turing the completed design. Furthermore, the test apparatus may be shared over all

designs.

igure 1.9 Example of a gate array design. The routing is not shown.

19

Introduction

However, the decision not to program all layers has drawbacks. Figure 1.9 shows a

gate array design. Since the device and cell level are already prefabricated, the heights of

the channels are fixed. The IC manufacturer must decide how much area should be

reserved for each of the channels in the first phase. Too much reserved routing area leads

to low utilization of the gate array resources while too little area leads to designs that are

unrouteable in the second stage. For this reason, IC manufacturers offer a line of various

sized gate arrays; the systems designer seeks to find the one that fits the best.

An extension of the gate array methodology is the sea-of-gates style. The sea-of-gates

array consists of many rows of transistors as shown in Figure 1.10. In the sea-of-gates

style, there are no areas reserved strictly for interconnect as with the traditional gate array.

Instead, routing is performed in the same area as the rows of transistors. If there is not

enough area to complete the routing in a region, an entire row of transistors may be left

unconnected. Since the cell level routing is eliminated when the transistors are left unused,

more resources are available to complete the routing. The region is expanded by eliminat-

ing rows of transistors until the routing can be completed. Many layers of interconnect

igure 1.10 Example of a sea-of-gates design. The routing is omitted.

row of transistors

20

Introduction

must be available to make this scheme practical. However, if enough routing resources are

available, this scheme is very area efficient.

All types of gate arrays suffer from the inability to implement large regular arrays such

as RAMs and PLAs efficiently. Either the array is defined as a prerouted macro cell in the

base array or as a collection of adjacent row cells which then need to be routed. If the array

is defined as a macro cell, then the size and placement of the array is fixed. Because it is

unlikely that the defined size exactly meets the needs of the systems designer, parts of the

array would be unused and result in wasted space. If the array is created by wiring cells

together, the routing area will greatly exceed that of the macro cell because the individual

row cells cannot be optimized for both array cells and the normal gate array cells. There-

fore, gate arrays are not ideal candidates for the mixed approach.

At the other extreme of the spectrum is the building block approach which is the typi-

cal style for fully handcrafted designs. Figure 1.11 shows an example of a macro cell

Figure 1.11 Example of a macro cell design.

21

Introduction

design. In general, macro cells can take arbitrary shapes. Most algorithms, however, limit

the shapes to rectangles or rectilinear figures. Macro cells are optimized for area and per-

formance, but routing becomes more difficult. Characteristically, the routing regions

become complex and some area is wasted. However, the area efficiency of the macro cell

style is still better than strict row-based methodologies.

Another methodology is the island-style gate array. It shares aspects with both the

row-based styles and the building block styles. It is related to the building block style in

that signals may not be routed implicitly through abutment. It is similar to row-based

styles where all of the cell instances are arranged in rows and columns. Since it is a gate

array, it again suffers from the inability to handle large arrays efficiently. Unlike row-

based gate arrays, routing needs to be performed in two dimensions. Its usefulness is

therefore limited, and is not very common today except for some FPGA implementations

Figure 1.12 Example of an island-style gate-array.

22

Introduction

where the cell instances are logically more complex. An example of an island-style gate

array is shown in Figure 1.12.

Field programmable gate arrays (FPGAs) differ from traditional ASIC methodologies

in that the system designer completes the programming of the integrated circuit but does

not need to return the design to the IC manufacturer for fabrication. FPGAs are completely

processed integrated circuits. The systems designer executes software which programs the

integrated circuit. The system’s designer can program an FPGA instantly (neglecting soft-

ware execution time). This allows rapid prototyping of large systems. There is, however, a

compromise between performance and programmability. FPGAs do not have the perfor-

mance of their less programmable counterparts. FPGAs have been proposed in all three

geometric styles.

1.2.2 Partitioning

Once the technology and design style have been chosen, physical layout can begin.

Partitioning is the first stage in the physical design process. The goal of this stage is to

break the netlist into one or more manageable pieces. There are two levels of partitioning:

partitioning a system among multiple integrated circuits and partitioning a single inte-

grated circuit design into multiple components. Today’s designers are faced with a dearth

of automatic tools which they use to partition systems into multiple chips. Within a single

integrated circuit, partitioning is performed whenever macro cells exist, or when the num-

ber of row-based cells is extremely large. Each piece of the netlist will become a compo-

nent in the floorplanning stage. Often, the partitioning stage is implicit; the designer has

created the logic to mimic the physical components available using a library of predefined

components. If all the components are standard cells or gate array cells, and the number of

standard cells is sufficiently small, partitioning need not be performed. In the event that

both macro blocks and standard cells are present in the design, the standard cells will be

partitioned into one or more softcells while completed macro blocks will be partitioned

23

Introduction

into hardcells. A soft macro is a macro cell in which some geometric quantity is unknown

such as aspect ratio, pin locations, or shape. A hard macro has all information determined.

After partitioning, each integrated circuit will have a reduced netlist ready for floorplan-

ning.

Partitioning a netlist into two pieces by minimizing the number of nets interconnecting

the two pieces can be computed in using a variant of the Ford-Fulkerson algorithm

[66]. When size restrictions are imposed on the two pieces, partitioning becomes NP-com-

plete.

1.2.3 Floorplanning

Floorplanning is the second stage in the physical design process. As its name suggests,

the purpose of floorplanning is to plan the overall physical structure of the integrated cir-

cuit. The floorplanner’s input consists of a partitioned netlist of macro cells modeling the

physical components. Some components in this netlist may not be completely character-

ized in terms of area, aspect ratio, timing, or I/O terminal positions. The floorplanner will

determine the uncharacterized aspects of any soft macro cells.

The goal of the floorplanner is to place the hard and soft macro cells at the position

within the integrated circuit which minimizes total cell area and maximizes circuit perfor-

mance. In order to estimate total chip area and performance accurately, the floorplanner

must also estimate the wiring area between components.

Some floorplanning algorithms only allow sliceable floorplans. A sliceable floorplan is

derived by repeated bipartitions of the core as shown in Figure 1.13a. This floorplan can

be subdivided into two pieces at each step if the core is divided using the order specified in

the figure. Sliceable floorplans have the desirable property that they can be routed using

only a channel router in the reverse order of the bipartitioning cut lines; however, this

method does not yield the smallest area. Other floorplanning algorithms permit nonslice-

O n
3

 
 

24

Introduction

able floorplans as shown in Figure 1.13b. In the nonsliceable floorplan, there is no way to

bipartition the area into two complete pieces at each step. Routing the nonsliceable floor-

plan is a complex task requiring specialized routers known as switchbox routers or area

routers. However, this floorplan yields the smallest area, the primary objective of floor-

planning.

1.2.4 Placement

Placement positions the cell instances within the integrated circuit. The ideal goal of

placement is to position the cells to yield maximum performance using minimum area.

Unfortunately, this is an incredibly tough task because the number of possible placements

grows exponentially with the number of placeable objects. In order to calculate the exact

area required for a placement, we must complete the remaining steps of the physical

design process. However, all of these subtasks are NP-complete problems, and there is not

an efficient way to calculate the exact area of a placement. Therefore, at the placement

stage, we must work with an estimate of the area or use a heuristic.

There have been numerous algorithms proposed to solve the placement problem.

Placement algorithms may be broadly divided into four categories: constructive, iterative,

analytical, and esoteric algorithms. Constructive algorithms selectively add one cell at a

a) b)

Figure 1.13 Examples of a) sliceable and b) nonsliceable floorplans.

1

2

2

3

25

Introduction

time to the placement based on an evaluation function. Iterative algorithms take an initial

placement and improve it by modifying the configuration. Analytical algorithms mathe-

matically calculate the positions of the cells from the network description. Esoteric algo-

rithms are derived from recent advances in other related fields. Examples of these methods

will be discussed in Chapter 3.

1.2.5 Global Routing

Global routing is the decomposition of an integrated circuit interconnection network

into net segments, and the assignment of these net segments to regions or channels. The

global routing results will be fed to a detailed router on a channel by channel basis. The

detailed router will create the physical geometries necessary to manufacture the photo-

masks. This divide-and-conquer strategy produces global view solutions while managing

the complexity of large circuit designs. It is assumed that the positions of the pins of a net

have been determined in the placement phase.

There are two types of global routing: graph-based global routing and plane-based glo-

bal routing. In graph-based global routing, a graph is built which models the topology of

the placement. Each edge of the graph is associated with a routing region. Every edge is

assigned a weight equal to the width or capacity of the routing region. The pins of the nets

are then projected onto the graph. The task of the graph-based global router is to connect

the pins of all the nets without violating any capacity constraints. Each net that passes

through an edge adds a track, or a net spacing requirement, to that routing region. The

total cost of an edge is the maximum density of the tracks passing through the edge. For a

feasible routing, the cost for every edge must be less than or equal to the capacity for that

edge. In addition, the resulting subgraph should be a tree (free from any cycles). The min-

imum interconnection trees are known as Steiner trees.1 Figure 1.14 shows an example of

1. Formally, the Steiner tree problem in graphs is defined as follows: Given a graph G = (V,E), a weight
 for each , a subset and a positive integer bound B, is there a subtree of G that

includes all the vertices of R and such that the sum of the edge weights in the subtree is no more than B?[73]
w e() Z0

+∈ e E∈ R V⊆

26

Introduction

graph-based global routing. The graph surrounds the cell instances which are the shaded

rectilinear regions. The minimum Steiner tree for five pins is shown.

The second type of global routing is performed on the plane as shown in Figure 1.15.

In this case, the global router may have to add feedthroughs which are cells that allow a

wire to cross through a cell region. There are five feedthroughs in Figure 1.15. There are

two types of feedthroughs: explicit and implicit. An explicit feedthrough is a special cell

instance that only contains interconnect to cross the row. It adds to the length of a row. An

implicit feedthrough is an uncommitted crossing point built into a library cell. Its addition

pin a

pin b

pin c

pin d

Figure 1.14 Example of graph-based global routing for a 5 pin net. The thick line shows the Steiner
tree for this net.

pin e

27

Introduction

does not change the length of a row. When necessary, it is advantageous to use implicit

feedthroughs because they do not add to the width of the chip.

Plane-based global routers also need to determine the position of switchable net seg-

ments. Switchable net segments are net segments which may be placed in any of several

routing regions. The global router must determine the routing regions for all switchable

segments such that the total area of the chip is minimized. Figure 1.15 shows a switchable

net segment which may be placed in either region 1 or region 2.

Most global router algorithms route one net at a time finding the shortest route for each

net. Often it is not possible to meet the capacity constraints using the shortest routes for all

nets because they compete with each other for the available routing space. The route for

one net will often block another from completing its connection. The order that the nets

are routed becomes a critical factor in the final result. In this thesis, we will propose a

method which looks at all nets simultaneously and seeks to avoid the routing-order depen-

dence problem.

igure 1.15 Example of plane-based global routing.

electrically equivalent ports

switchable net segments
region 2

region 1 feedthrough

28

Introduction

1.2.6 Detailed Routing

After global routing has determined the topology of the interconnections, the detailed

routing phase begins. Detailed routing creates the geometries for fabrication including the

size, position, and layer for each net segment, and the placement of the vias which join the

segments of a net. The many detailed routers that have been proposed can be broken into

two main groups: general purpose and restricted routers. Maze and line probe are exam-

ples of general purpose routers. The restricted category includes channel, switchbox,

power and ground, and river routers.

A maze router (Lee router) operates on a gridded model of the routing region and

routes a single net at a time [129][156]. The width of the grid is set to the pitch1 design

rule for the routing layer. A maze router starts from a source port and expands in a

breadth-first manner labeling each grid with the current length until it hits the target port

as shown in Figure 1.16. A maze router will always find the shortest path between the

source and the target if such a path exists. A maze router can always find its way around

obstacles and can be extended to handle any number of layers. It may be implemented in

 time where n is the number of grid points in the maze [130].

However, maze routing is not without disadvantages. The most severe problem is the

large amount of memory required for large designs. The space complexity of maze routing

is where n is the number of grid points in the maze. For large circuits with long

interconnects, the number of grids to visit in the search becomes enormous, and the run

time becomes prohibitive. In addition, maze routers create connections sequentially and,

therefore, suffer from routing order dependence. Additional problems arise when routing

layers have different design rules. It is difficult to match the grids between layers except in

the special case where all layers have a non-trivial greatest common divisor. Otherwise, it

1. Pitch is defined as the sum of the minimum spacing plus minimum width for a layer. The center-to-center
distance between two adjacent routing tracks on the same layer must be greater or equal to the minimum
pitch for the layer.

O n nlog()

O n2()

29

Introduction

is best to route with a simple grid for each layer and have the compaction/spacing phase

correct design rule violations.

In order to reduce the memory requirements of detailed routing, line probe routers

have been developed [89][152]. Instead of storing the entire routing area in terms of grids,

a line probe router stores only the features of the routing boundary, obstacles, and previ-

ously routed nets. Each feature is stored as a set of line segments. The algorithm starts by

projecting line probes, or lines from both the source and target ports, as far as possible in

horizontal and vertical directions. If two probes intersect, the route is complete, but if

blocked by an obstacle or already placed wiring segments, an escape point is generated

and new probes are projected from that point. This process continues until two lines inter-

sect yielding a route, or all escape points are exhausted. Figure 1.17 shows a line probe

router in action. Although line probe routers drastically reduce the memory requirement

for detailed routing, they may not find the shortest length route and they may not find a

1 2

1 1

1

2

2

22

2

2

3

3

3

3

3 3

3

4

4

44 5

5 6

6 7

7

7 8

8

8

8

8

9

9

9

9

9

9

T

S

O

Figure 1.16 An example of one layer maze routing. The width or height of each square equals the
grid size. The algorithm labels the grids in a breadth-first manner. Each grid was visited at the step
given by the label. There are several paths from the source S to the target T avoiding obstacle O.
Each path has the same length (9) but the number of bends may vary. Two such paths are shown.

30

Introduction

route even if one exists. In addition, they also suffer from the routing-order dependence

problem.

The most prevalent integrated circuit router is the channel router. The channel router

restricts pins to the top and bottom sides of a rectangular routing region known as a chan-

nel. The width of a channel is fixed but not the height. In exchange for this restriction, a

channel router is able to route all nets in parallel avoiding the routing-order dependence

problem.

The first channel router was based on the left-edge algorithm (LEA) [86]. This algo-

rithm restricts each net’s horizontal span to a single wire segment. The algorithm proceeds

as follows: First, all of the horizontal spans of the nets are sorted by their left endpoint.

Each track is processed in turn starting at the left edge of the channel. The first unplaced

segment in the sorted list is placed into the bottom track. Next, the algorithm searches the

sorted list to find the next segment which will fit in the bottom track. The scanning is

repeated until no other segment can fit in this track. The algorithm then repeats for the next

track, trying to add as many segments as possible to the current track. The scanning termi-

Figure 1.17 Example of a line-probe router [89]. Escape points are labeled E.

S
Obstacle

T

EE

E

E

Obstacle

31

Introduction

nates when all horizontal spans are placed. The connections to the pins in the vertical

directions are then added completing the route.

The above algorithm works correctly except in the case of cyclic vertical constraints.

Vertical constraints are formed wherever different vertical wire segments attach to the ter-

minal pins at the top and bottom of the channel at the same x coordinate. If a vertical wire

segment connects to a terminal at the top of the channel, its connection to the horizontal

wire segment must be above any connection to a pin of another net at the bottom of the

channel at the same x coordinate. Otherwise, a short circuit would develop between the

two signals. This can be represented using a vertical constraint graph. The vertical con-

straint graph is a directed graph where the nodes are the signal names of the terminal pins

and directed edges are formed from pins at the top of the channel to pins at the bottom of

the channel at the same x coordinate. Figure 1.18 shows an example of a cycle in the verti-

cal constraint graph. In this case, nets A and B cannot be routed in two layers using the

left-edge algorithm without creating a short circuit. In order to complete the route, a dog-

leg must be introduced. A dogleg is a vertical wire segment which occurs at a nonterminal

position (for the net). A dogleg will break the horizontal span into two pieces which will

A

D

C E

B C F

ED B

A

A

B

D

C

E

FShort
here

Vertical Constraint Graph

cycle

Channel

Figure 1.18 Example channel and corresponding vertical constraint graph.

32

Introduction

be placed on different tracks. With the single horizontal wire segment restriction removed,

the channel can now be routed as shown in Figure 1.19.

Many channel routing algorithms have been proposed. The dogleg channel router

breaks vertical constraints by splitting tracks into sections and connecting them with dog-

legs [48]. YACR2 uses a pattern router (special maze router) to fix the vertical constraints

[179]. Other channel routers avoid the left edge algorithm entirely: The greedy approach

wires the channel column by column [182]. The hierarchical channel router routes the

channel recursively [22]. Regardless of the algorithm, the channel router guarantees a

100% completion rate since it has the freedom to increase the height of the channel. But

such a freedom adds area to the chip. Figure 1.20 shows the output of a channel router.

A

D

C E

B' C F

ED B''

A

A

B'

D

C

E

F

New Vertical Constraint GraphChannel

Figure 1.19 Addition of a dogleg to the example channel. The new vertical constraint graph is shown.

A

B''

dogleg

Figure 1.20 A channel routing example using two layers. This is not a left-edge algorithm[234].

33

Introduction

Another type of router is the area or switchbox router [37][80][102][207]. An area

router makes interconnections within a fixed boundary. Pins may occur anywhere within

the fixed boundary. Figure 1.21 shows an example of an area router.

Another specialty router is the river or planar router. A route is planar if it can be

described using a planar graph. In the planar graph, the nodes of the graph are the pins and

the edges of the graph are the nets. Planar graphs can be implemented using a single layer.

This style of routing is useful for buses and data flow architectures.

Power and ground interconnections are normally made with a specialized router.

Power and ground connections need to have different widths due to electromigration

problems and voltage drop constraints. Electromigration is the redistribution of metal

molecules of a wire when the current density in a wire exceeds [149].

Figure 1.21 An area route for a macro cell example using four layers.

layer 1
layer 2
layer 3
layer 4

5
5×10 A cm 2–⋅

34

Introduction

Since the redistribution removes metal molecules from the region of highest current den-

sity, open circuits are created at these points. The problem can be rectified by increasing

the width of the conductor and thus reducing the current density. In addition, a circuit may

not function if the voltage drop due to the resistance in the power and ground wires is

large. The resistance R of a wire segment is given by,

, (1.2)

where n is the number of squares of a conductor and is the sheet resistance of the con-

ductor in ohms per square1.

A power and ground router must size the width of the power nets to meet the elec-

tromigration and voltage drop constraints yet route in a minimum amount of area [33][58].

1.2.7 Compaction/Spacing

Compaction or spacing is an optional step to reduce integrated circuit area while elim-

inating design rule violations. If a design has initial design rule violations, spacing could

actually increase the size of the chip. Spacing minimizes the area of an integrated circuit

without changing its topology. It is important to keep the topology constant to preserve the

timing and performance optimization of the previous phases. Spacing is mandatory when-

ever the detailed routing step is performed in the symbolic domain. Spacing is also used to

transform design rule independent layouts into properly spaced designs for a given tech-

nology.

Spacing algorithms can be divided into two types: virtual grid compactors and con-

straint-graph compactors. They can be further classified as one-dimensional (1D) or two-

dimensional (2D) compactors. The virtual grid method finds component positions by

grouping all components at the same grid line together such that adjacent virtual grid lines

1. A square is a square piece of conductor. The number of squares for a wire segment may be obtained by
dividing the length of the conductor by its width.

R n Rs⋅=

Rs

35

Introduction

are as close as possible, and design rules are maintained between any two components

[184][236]. Experiments have shown that virtual grid compaction is not as effective as

constraint-graph compaction [171].

The most widely used algorithm for spacing is constraint-graph compaction [137]. The

required spacing and connections for physical components are modeled using a directed

weighted graph. The nodes of the graph represent the positions of the components, and the

edges of the graph denote constraints between components. The constraint graph algo-

rithm is usually executed in one dimension, where compaction is attained optimally. Two

dimensional compaction is performed by compacting in one direction and then in the

other. The direction is alternated until no further consolidation of area is possible.

The 1D compaction algorithm proceeds as follows: First, the longest path in the con-

straint graph is found. Next, components along the longest or critical path are placed at

their minimum positions. Finally, the remaining components which are not on the critical

path are placed. For noncritical components, there is some freedom in placement. Many

move strategies have been proposed including left-edge, right-edge and centering strate-

gies [164]. The move strategy employed in the current compaction direction affects the

outcome of the next compaction direction. Figure 1.22 shows an example of 2D compac-

tion using successive applications of 1D compaction. In all steps, the topology in the com-

paction direction is preserved. However, the topology in the orthogonal direction is

changed and the resulting 2D topology is different for the two orders. This is not surpris-

ing since 2D compaction has been shown to NP-complete [191]. Large changes in the

topologies of cell instances can create large changes in the routing resources leading to an

increase in chip area. In this thesis, we will present an algorithm which preserves the 2D

topology using the 1D compaction algorithm.

36

Introduction

0
0

0

0

480

170
200

540

0

0

230

170

190

230

190 170
70

0

0

170
190

230

0

190

170

70

540

170

0

480

0
0

480

540

200

c) d)

b)

f)

a)

e)

g) h)

Figure 1.22 Order differences in 1D compaction. Steps a-d show x-compaction before y-compaction
while steps e-h show y-compaction before x-compaction. The final topology is different in the two
cases. The hatched areas are on the critical path. The labels denote the constraints. A centering
move strategy has been employed.

37

Introduction

1.2.8 Design Verification

The final step in the layout process is the verification step. The design must be verified

to make sure it is design rule correct, functionally correct, and meets all of the perfor-

mance criteria [172]. Checkers have been developed to insure that the design does not

contain any design rule violations. A design rule checker verifies that each mask geometry

meets all spacing and width constraints [141].

Functional correctness is insured by comparing a physical netlist against the system

designer’s circuit netlist [59]. The physical netlist is created by extracting all devices from

the physical layout. The extractor program recognizes devices by the composition of lay-

ers. For example, an N-channel transistor is formed whenever the polysilicon layer over-

laps an n-type diffusion layer. The devices are then interconnected by extracting the

routing layers. The resulting physical netlist is matched against the user’s input and any

discrepancy is noted. Automatic layout systems are correct-by-construction and should

not need this test. However, a flaw in an algorithm or data entry mistake could render the

entire IC nonfunctional. This step seeks to avoid such costly problems.

Performance criteria may be validated by resimulating the extracted physical netlist. In

this case, the routing interconnect parasitics are extracted. The parasitics may be modeled

as a lumped capacitance placed at output of transistors or modeled as resistor-capacitor

(RC) trees if more accuracy is needed [94].

If design verification does not detect any errors, the IC is sent for fabrication. Other-

wise, the systems engineer must determine the problem and correct it. Such troubleshoot-

ing is time consuming. Therefore, the layout process must be flawless as time-to-market is

critical in today’s world. In this thesis, we will present algorithms which meet this need.

38

Introduction

1.3 Organization of the Thesis

The remaining part of this thesis will deal with specific topics in automatic placement

and routing. A chapter will be devoted to each subject. Each chapter will describe its sub-

ject, outline previous work done on the topic, and present new algorithms for solving the

problem.

