
Automatic Layout of Analog and Digital Mixed
Macro/Standard Cell Integrated Circuits

William Swartz

Yale University

Outline

☛ Introduction

☛ Mixed Design Flow

☛ New Placement Techniques in TimberWolf

• Statistical Wire Estimation

• Timing Driven Placement

• Analog Crosstalk Minimization

☛ New Global Routing Techniques

☛ Results

☛ Conclusions

Why Integrated Circuits?

• System integration and consolidation

• Weight and size reduction

• Increased reliability

• Component matching

☛ Cost reduction

Spectrum of Design Methodologies for ICs

custom semicustom (ASICs) programmable logic

gate array

sea-of-gates

Programmable Array Logics
(PALs)

user-programmable specifications

lower performance

rigid specifications

higher performance

standard cell

Programmable
standard
parts

Field Programmable
Gate Arrays
(FPGAs)

Designing Integrated Circuits
requirements

behavioral description

structural representation

structural representation

physical representation

functional integrated circuit

specifications

Design Specifications

Functional Design

Logic Design

Circuit Design

Physical Design

Fabrication and Test

Physical Design Transformation

Flipflop

CLK

QB

Phase1

Feedback

Out

Feedback

Phase1

Out

Feedback

D

CLK

Q

Q

QB

QBQB

D

D

INSTANCE 1 Flipflop

Phase1, Feedback, Out, Feedback
.
.
.

CELL FlipFlop

CLK, D, Q, QB

Flipflop

QD

Textual RepresentationSchematic Representation

Physical

Level

Logical or

Circuit Level

a) b)

c)

The Physical Design Stages
netlist

Floorplanning

Placement

Global Routing

Detailed Routing

Compaction/Spacing

physical representation

Physical Design

Partitioning

Verification

Design Styles

Standard cell design style Macro cell design style

Suits random logic Suits array architectures

Row-based Design Methodologies

bond

Routing

standar

core

I/O

bond

bond

Standard Cell Gate Array

Sea-of-Gates Island style gate array

Mixed Design Style

Core region I/O pad

Tour of Mixed Macro / Standard Cell Physical Design

MSG>

Control Flow

Cluster

MC_route

TimberWolfSC

TimberWolfMC

Global Router

SC_route

Syntax

Cluster : Partitioning

TimberWolfMC : Floorplanning

Genrows : Core region floorplanning
core region bounding box

tile 3

tile 2tile 1

tile 4

tile 5

tile 8
tile 7

tile6

macro1

macro2
macro 3

tile 3

tile 4

tile 5tile6

tile 1 tile 2

Genrows : Row topology generation

TimberWolfSC : Placement and global routing

☛ Placement - determine the position of individual cells given a cost function.

• Wire length

• Timing constraints

☛ Global routing - determine the interconnections of the signal network.

• The network is decomposed into net segments.

• The region for each net segment is calculated.

Sc_route : Standard cell detailed-routing

TimberWolfMC : Placement refinement (compaction)

Mc_route : Final detailed-route

Need Efficient Algorithms

complexity n=20 n=50 n=100 n=200 n=500 n=1000

1000n* 0.02 sec 0.05 sec 0.1 sec 0.2 sec 0.5 sec 1 sec

* 0.09 sec 0.3 sec 0.6 sec 1.5 sec 4.5 sec 10 sec

* 0.04 sec 0.25 sec 1 sec 4 sec 25 sec 2 min

* 0.02 sec 1 sec 10 sec 1 min 21 min 2.7 hr

0.04 sec 1.1 hr 220 days 125 cent

0.0001 sec 0.1 sec 2.7 hr

1 sec 35 yr

58 min

1000nlgn

100n
2

10n
3

n
lgn

5
8×10 cent

2
n 3⁄

3 10
4× cent

2
n

3 10
4× cent

3
n

2 10
9× cent

“Big-O” notation

☛ O-notation gives an upper bound of a function within a constant factor.

For a given function we denote by the set of functions

: there exist positive constants c and such that

for all .

g n() O g n()()

O g n()() f n(){= n0

0 f n() cg n()≤ ≤ n n0 }≥

0

f n()

cg n()

n

Basic Simulated Annealing Algorithm

Algorithm simulated_annealing()
1 do
2 do
3 j = generate(i)
4 if accept(, T) then
5 i = j
6 until cost is in equilibrium
7 reduce(T)
8 until cost cannot be reduced any further

Algorithm accept(, T)
1 if then /* new cost is less than or equal to the old cost */
2 return(ACCEPT) /* accept the new configuration */
3 else
4 randomly generate a number r between 0 and 1
5 if r < then return(ACCEPT)
6 else return(REJECT)

∆C

∆C
∆C 0≤

xp
∆C–
T

----------- 
 

New Placement Techniques-Wire Area Estimation

☛ Routing interconnect between adjacent macro cells is modeled as extra area
appended to each of the corresponding cells during simulated annealing
placement.

☛ Wiring area between macros is estimated during placement in order to avoid
large perturbations in the topology during detailed-routing and compaction.

Problems with Existing Wire Estimators

☛ Existing wire estimators are theoretical models.

☛ Problematic if the design style violates any of the assumptions of the
theoretical model.

☛ For example, model must be changed if another routing layer is added.

Inaccurate Modeling

C1

☛ TimberWolfMC version 1 overestimates the routing area needed for cell C1.

Cell area

Routing Estimate

Resulting Placement using Previous Wire Estimator

C1

☛ Placement after global routing using original wire estimator. Notice the gross
inaccuracy in the estimation of cell C1.

Cell area

Routing Estimate

Actual Routing

Inaccurate Wiring Estimates Lead to Poor Area
Efficiency

☛ White space around cells is unused area.

Cell area

Actual Routing

Solution: Statistical Wire Estimator

☛ Use a general statistical model which is adapted for every circuit.

☛ Define the estimated interconnect area for cell edge i to be

(1)

where c0...c5 are constants, x and y are the normalized chip coordinates , and p

is the number of pins in the channel.

☛ To obtain the model constants:

• Place the circuit using a 10x annealing schedule and the theoretical
estimation model.

• Perform global routing and/or detail routing to calculate routing areas.

• Use a least squares method to fit the data to estimator model.

☛ Subsequent placements are performed using the statistical model.

☛ Placement algorithm learns from the previous executions.

☛ The statistical model adapts to any design style and routing technology.

i c0 c1 x⋅ c2 x2⋅ c3 y⋅ c4 y2⋅ c5 p⋅+ + + + +=

0.0 1.0,[]

Placement Using Statistical Estimator

Cell area

Routing Estimate

Actual Routing

☛ Placement after global routing using statistical wire estimator.

Accurate Wire Estimation

Cell area

Actual Routing

☛ This is the minimum area placement for this example.

☛ The remaining white space does not impact chip area.

New Placement Techniques - Timing Constraints

The parasitic capacitance of a wire segment is

(2)

The resistance of a wire segment is given by

(3)

Vdriver

Rdriver

Cgate

RCdistributed

driver
load

wire

C
εA
d

εlw

t
--------- C l∝⇒= =

R
ρl
A
----- Rs

l
w
---- R l∝⇒⋅= =

Timing Driven Placement

TimberWolf supports the following types of timing constraints:

☞ critical path using wire length constraints.

☞ matched critical path using wire length constraints.

☞ critical path using timing constraints.

☞ matched critical path using timing constraints.

☞ critical path analysis using pin pair constraints.

☞ matched critical path analysis using pin pair constraints.

Critical path using wire length constraints

☞ Implemented first in TimberWolf version 5.6.

☞ The penalty assigned for a path p is the amount the length deviates from

satisfying the bounds:

(4)

where the length of a path p is the sum of the half perimeter wire length of all the nets n in

the path:

(5)

p

length p() upperBound p()– if length p() upperBound p()>
lowerBound p() length p()– if length p() lowerBound p()<

0 otherwise




=

length p() Sx n() Sy n()+
n∀ p∈
∑=

Wire length Constraints

☞ The total penalty is just the sum over all the specified critical paths:

(6)

☞ Does not take drive strength into account.

T Pp
p 1=

Np

∑=

Matched Wire Length Constraints

☞ The user specifies a tolerance for the mismatch in path length. In this case,

we assign the penalty for a set of paths to be:

(7)

where the match is defined as

(8)

☞ Useful for analog circuits.

Pp

match p() tolerance p()– if match p() tolerance p()>
0 otherwise

{=

match p() length p1() length p2()–=

Critical Path Using Timing Constraints

☞ Time constraints which consider driver strength.

☞ The arrival time for a path p is the summation of all the net delays for

the path:

(9)

☞ The delay for a single net n is the sum of the intrinsic gate delay

associated with the driver of the net n, and the product of the equivalent

driver resistance , and the total load capacitance seen by the driver:

(10)

Ta n

a Dn
n∀ p∈
∑=

Tn

Rn

Dn Tn RnCn+=

Parasitics

☞ The total capacitance for a net has two components: gate input capacitance

and parasitic capacitance.

(11)

☞ During placement, we can estimate the parasitic capacitance using the half

perimeter bounding box metric:

(12)

Cn CGn
Cpn

+=

Cnp
CLx

Sx n() CLy
Sy n()+=

Arrival Time Equation

☞ Substituting Equation 8 and Equation 9 into Equation 10, we get:

(13)

☞ We can precompute the terms in the summation which do not depend on

wire length by defining:

(14)

☞ This results in the following simplified equation for the arrival time:

(15)

Dn Tn RnCG Rn CLx
Sx n() CLy

Sy n()++ +=

Tn RnCG+[]
n∀ p∈
∑=

Ta Rn CLx
Sx n() CLy

Sy n()+ K+
n∀ p∈
∑=

Penalty for Critical Path Constraints

(16)

where the user has specified an upper (Tru) and lower bound (Trl) on the required arrival

times.

Ta p() Tru p()– if Ta p() Tru p(>

Trl p() Ta p()– if Ta p() Trl p()<

0 otherwise





=

Penalty for Matched Critical Path Constraints

We assign the penalty for a set of paths to be:

(17)

where the match is now defined as difference in arrival times,

(18)

Pp

match p() tolerance p()– if match p() tolerance p()>
0 otherwise

{=

match p() Ta p1() Ta p2()–=

Timing Driven Placement Using Pin Pairs

☞ User only specifies primary input and primary output pin pairs from logic

diagram.

No need to enumerate critical paths between pins.

A

B

C

D

E

C1

C2

C3

C4

C5

C6

C7

Pin Pair Constraints

☞ From logic diagram convert to timing graph

☞ Remove any cycles by breaking feedback paths.

☞ Use delay modifiers to break any false paths (user specified or from TA).

A

B

C

D

E

New simulated annealing algorithm

Algorithm Simulated-Annealing-With-Timing(M)
1 /* read list of false paths from user */

2 buildTimingGraphs /* P is the set of all pin pairs */

3 do
4 do
5 j = generate(i)
6 if accept(, T) then
7 i = j
8 until cost is in equilibrium
9 for each do /* d is a pin pair */

10 if then /* a nonzero lower bound exists */

11
12 for each edge do /* negate edge weights */

13
14 /* find M longest paths */

15 reduce(T)
16 until cost cannot be reduced any further

FP{ } readFalsePaths()←
P Gn,()

∆C

d i j,() P∈=
Tlb i j,() 0>

Ta{ }
d

findMShortestPaths i j M, ,()←
e E V[]∈

w' w–←
Ta{ } findMShortestPaths i j M, ,()←

Pin Pair Constraints

☞ User parameter M controls the number of paths monitored during simulated

annealing.

☞ Since timing graphs are directed acyclic graphs, we can find the M shortest

or M longest paths in time using Dreyfus’s algorithm.O Mn nlog()

Matched Pin Pair Constraints

☞ The user specifies a tolerance for the mismatch in path length. In this case,

we assign the penalty for a set of paths to be:

(19)

where the match is now defined as difference in arrival times,

(20)

p

match p() tolerance p()– if match p() tolerance p()>
0 otherwise

{=

match p() max
i j,

Ta pi() Ta pj()–=

Results: wire length constraints

Legend

 average

 variance

0 100 200 300

1

2

3

4

5

6

7

8

Wire length in microns

N
um

be
r

of
 n

et
s

0 100 200 300

1

2

3

4

5

6

7

8

9

10

11

12

13

N
um

be
r

of
 n

et
s

Wire length in microns

Results: pin pair constraints

0 25 50 75 100 125 150 175 200 225 250

1

2

3

4

5

6

7

8

9

10

time in nanoseconds

nu
m

be
r

of
 p

at
hs

No constraints

0 25 50 75 100 125 150 175 200 225 250

10

20

30

time in nanoseconds
nu

m
be

r
of

 p
at

hs

M = 1

Results : pin pair constraints

☛ The integrated circuit is 34% faster, with an area penalty of only 2.5% and an
execution time increase of 16%.

run no constraints M=1 M=5 M=17

1 198 130 131 129

2 209 134 125 134

3 211 135 119 133

4 214 136 126 124

5 209 137 119 129

average 208 134 124 130

no constraints M=1 M=5 M=17

wire length 57276 60691 63073 61209

area ()

run time (secs.) 670 801 966 1201

µm
2 1.56

6×10 1.60
6×10 1.68

6×10 1.58
6×10

Timing Results : Struct

0 50 100 150 200 250 300

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300

5

10

15

20

25

30

35

40

45

50

No constraints M=5

Crosstalk Constraints

☛ Parasitic capacitance between conductors:

(21)

☛ Lower capacitance

• Decrease area of overlap.

• Increase spacing betwen conductors.

CAB
εA
d

------=

Net Classification Scheme

General net classification

NET digital_net1 CLASS 1

NET analog_net1 CLASS 2

NET ground CLASS 3

NET digital_net2 CLASS 4

NET digital_net3 CLASS 5

CROSSTALK CLASS 1 CLASS 2 10 10

CLASS 3 SHIELDS 1 FROM 2

CROSSTALK CLASS 2 CLASS 4 10 10

 CROSSTALK CLASS 4 CLASS 5 20 20

ANAGRAM net classification

NET digital_net1 noisy

NET analog_net1 sensitive

NET ground CLASS neutral

NET digital_net2 CLASS noisy

NET digital_net3 CLASS noisy

Justification for the General Net Classification

digital1

analog

digital2

digital3

☛ Each signal has a period of activity.

Crosstalk penalty in Simulated Annealing

(22)

(23)

T

P if overla

0 otherwise
=

P min Xi Xj,() max xi xj,()–[] min Yi Yj,() max yi yj,()–[] dx dy+ + +=

bounding box j

core boundary

bounding box i

(Xj,Yj)

(Xi,Yi)

(xi,yi)

(xj,yj)

cell 4

cell 3

cell 2

cell 1

pin

Crosstalk (without constraints)

IN

FB

OUT

VC-

VC

Crosstalk (with constraints)

IN

FB

OUT

VC-

VC+

New Global Routing Algorithm

☞ Generalized row-based global router suitable for standard cell, gate-array,

sea-of-gates, and FPGAs.

☞ First row-based global router to explicitly minimize chip area.

☞ Adapts to technologies.

☞ Uses exact port locations and exact density calculations.

☞ Handles preplaced feedthrough cells.

☞ Allows incremental global routing.

☞ Vertical constraint minimization

☞ Takes timing into account.

Previous Work

Global Routing
• Maze Routing - Lee [1961].

• Constructive Method - J.T. Lee and M. Marek-Sadowska [1984].

• TimberWolf 3.2 Standard Cell Global Router - Sechen and
Sangiovanni-Vincentelli [1986].

• Integer Linear Programming - Raghavan and Thompson [1987].

• Parallel Algorithm - Rose [1988].

• Standard Cell Router - Cong and Preas [1988].

• Field Programmable Gate Arrays - Rose et al. [1990][1991].

• Sea-of-Gates Extension - Lee and Sechen [1991].

• Provably Good Performance-Driven Global Routing - Cong et al.
[1992].

Previous Work

Steiner Tree Generation
• Fermat [1638]

• Torricelli [1646]

• Hanan [1966]

• Hwang [1976][1979]

• Lee, J. H., Bose, and Hwang [1976]

• Servit [1981]

• Bern [1988]

• Lee, K. and Sechen [1988]

• Richards [1989]

• Ho, Vijayan and Wong [1990]

• Hasan, Vijayan, and Wong [1990]

• Kahng and Robins [1990]

• Chua and Lim [1991]

But the Results are Worse

• Data is for an average of 8 runs.

Circuit TimberWolfSC /SGGR TimberWolfSC with iterated Steiner

wirelength feedthrus tracks wirelength feedthrus tracks

primary1 944360 717.8 163.5 942816 749 163.4

primary2 4251730 4383 346.4 3811600 2982 359.6

Steiner Points Aren’t Always Good
A B

DD

A) Desired Steiner tree if Steiner point separation D is greater than average feed

separation.

B) Otherwise, only one Steiner point should be inserted.

☞ Feedthrough resources must be taken into account when building Steiner

trees.

Overview

Algorithm Global-Router(placement, netlist)
1 Region-Generation()
2 Area-Minimization()
3 Assign-Multi-Row-Feedthroughs()
4 Assign-Single-Row-Feedthroughs()
5 Remove-Cell-Overlap()
6 Cell-Swap-Optimization()
7 Switchable-Segment-Optimization()
8 Maze-Route()
9 Vertical-Constraint-Minimization()

10 Route-Verification()

Region Generation

Area Minimization
Algorithm Area-Minimization()

1 for to numnets
2 do = Build-Steiner-Tree(i, MINIMUM_WIRELENGTH)

3 compute

4 compute

5 compute

6
7 do
8
9 pick segment s of net n

10 if s crosses maximum density then
11 cost ← Flip-Segment()
12 else
13 if feed limited then
14 ← Build-Steiner-Tree(n, MINIMUM_FEEDS)
15 else if density limited then
16 ← Build-Steiner-Tree(n, MINIMUM_DENSITY)
17 else if Instance-Versions exists for net then
18 ← Swap-Instance-Versions(n)
19 cost ← Calculate-New-Cost()
20 if then Accept-Move()
21 while cost improves

i 1←
Ti

H trackpitch tracksr heightb
b 1=

numrows

∑+⋅
r 1=

numregions

∑=

W max
b 1 numrows,{ }∈

lengthb feedwidth feedsb⋅+()=

PT

oldcost W H⋅←

n Random 1 numnets,()←

Tn

Tn

Ti{ }

cost oldcost<

Steiner Tree Construction

Minimize Feeds Minimize Wirelength Minimize Density

Switchable Segment Optimization

Instance Versions

Version 2

A

Version 1

AB B A

Steiner Tree Reconstruction

Feedthrough Assignment

First Phase

☞ Assign feedthroughs over macro cells and/or FPGA freeways.

Second Phase

☞ Assign feedthroughs over rows if needed.

Optimal with respect to wirelength and congestion.

Phase I Assignment

Cost function

Cij = |Xi - Xj| + (Yi - yi) - [min(Yi, Yj) - max(yi,yj)] + P1

where Fi(x) = [xi,Xi], Fi(y) = [yi,Yi]

Cj(x) = [xj,Xj], Cj(y) = [yj,Yj]

P1 K ∆density⋅=

Freeway

Xj Yj(,)

xj yj(,)

Xi Yi(,)

xi yi(,)

Crossing

Multiple Row Freeway Assignment

Algorithm Feedthrough Assignment Phase I()
1 work_to_do ← TRUE
2 do
3 {Regioni} ← Find-Available-Macrofeed()
4 num_free ← Find-Number-Macrofeeds({Regioni})
5 num_cross ← Find-MultiRow-Crossings({Regioni})
6 if num_cross = 0 then break
7 if num_cross > 0 and num_free = 0 then error break
8 if num_cross > num_free then
9 Relax-Crossings({Regioni})

10 Linear-Assignment(C)
11 Update-Steiner-Trees()
12 while work_to_do

Phase II Assignment
Cost function
Cij = |Xi - Xj| + P1 + P2 + P3

where

P1

rowlength if explicit fe

0 otherwise
{=

P2

K if unused multife

0 otherwise
{=

P3 K ∆density⋅=

rowlength K«

(xi,yi) (xj,yj)

(Xi,Yi) (Xj,Yj)

Explicit Multiple Feed

Explicit Feed

Feedthrough Assignment

Algorithm Feedthrough Assignment Phase II()
1 for to numrows do
2 avail ← Find-Available-Feeds(r)
3 need ← Find-Net-Crossings(r)
4 if avail < need then
5 if fixed-width then
6 Relax-Steiner-Trees(r, MINIMUM_FEEDS)
7 Add-Extra-Feeds-Between-Cells()
8 Linear-Assignment(C)
9 Update-Steiner-Trees()

r 1←

Cell Overlap Removal

Cell Swap Optimization

Pairwise interchange of neighboring cells.

Orientation optimization.

Has major impact for designs that require many explicit feedthrus.

C Sxn
Syn

+
 
 

n 1=

nets

∑ PT+=

where

Sxn
Syn

steiner wirelength,

PT timing penalty

Switchable Segment Optimization

☞ Run area minimization algorithm again.

☞ Since feed positions are known ⇒ chip width is fixed.

Optimize track density.

Maze Routing

Net 1 (to other regions)
Net 2

Net 3

Net 4
Net 3

Net 2

Net 1 (to other regions)

1 2 3 4 3 2

2 2 2 3 2 2

max density = 4

Project net segments onto graph

Legend:

Noncritical Edge -

Critical Edge -

Noncritical Node

Critical Node

1

Now if we reroute net 1 using other regions:

Project net segments onto graph

2

Net 1

max density = 3

Maze Routing Critical Edges

We define

Dynamically, we update the edge cost weights

critical

0 if density node() maxdensity region() 1–<

1 otherwise





≡

C
∞ if critical n1() or critical n(

x1 x2– y1 y2– otherwise+



=

n1 n2 ni

(x1,y1) (x2,y2) (xi,yi)

Maze Route Example

Vertical Constraint Minimization

lgorithm Vertical-Constraint-Minimization()
1 /* C is the set of cycles */

2 for to numregions do
3
4 /* find cycles in the vertical constraint graph */

5 /* calculate initial track density */

6 while and cost improves do
7
8 pick segment s of net n
9 if then /* check to see if segment s occurs in any cycle */

0 cost← Flip-Segment()
1 /* does the flip break the cycle */

2 if and broken = TRUE then
3 Accept-Move()
4
5

C { }←

r 1←

Gv Build-Vertical-Constraint-Graph r()←

C C FindCycles Gv r,()∪←

oldcost Initialize-Cost()←

C { }≠

n Random 1 numnets,()←

s C∈

broken Check-Cycle C s,()←

cost oldcost≤

oldcost cost←

C C Cs{ }–=

Route Verification

☞ Depth-first search of Steiner tree checks to see if all pins are connected.

☞ Depth-first can detect if cycles exist.

Row-based FPGA Extensions

Freeway map

Row-based FPGA Extensions

☞ FPGA pin-maps are handles using instance version moves in area

minimization.

Pinmap 2

A

Pinmap 1

AB B A

Row-based FPGA Extensions

Algorithmic Complexity

Legend: C = number of cells, E = number of edges in maze graph, F = number of feedthrus in a single row/region, N
= number of nets, P = max. number of pins of a single net, R = number of regions, S = number of net segments, V =
number of vertices in maze graph.

Step Time Complexity Space Complexity

Region-Generation O(R2) O(R)

Area-Minimization O(NS) O(P)

Assignment I O(F3) O(F)

Assignment II O(F3) O(F)

Remove-Cell-Overlap O(ClogC) O(C)

Cell-Swap-Optimization O(C) O(C)

Switchable-Segment-Opt O(NS) O(P)

Maze-Route O(P[logV + E]) O(E+V)

Vertical-Constraint-Min O(NS) O(P)

Route-Verification O(V+E) O(P)

Results

MCNC Benchmark Results

Global Router Comparison using the same placement.

Implicit feeds were removed from the circuits.

Circuit TimberWolfSC version 6.0 TimberWolfSC version 7.0

width tracks area µm2 width tracks area µm2

sp1 5210 163 5200 160

sp2 11730 401 11600 374

guts 8344 1817 8300 1734

2.18
7×10 2.16

7×10

8.76
7×10 8.34

7×10

5.76
7×10 5.59

7×10

Results

☛ Results of MCNC benchmarks. Track count for implicit feeds case.

Circuit TimberWolfSC 6.0 SGGR TimberWolfSC 7.0

avg min max avg min max avg min max

small 60 51 65 55 53 59 49 47 51

primary1 150 142 167 141 140 141 141 140 143

primary2 386 368 407 346 342 352 340 338 344

industry3 1631 1576 1756 1485 1477 1490

Results

☞ Results of MCNC benchmarks. Wire length comparison for implicit feeds

case.

Circuit SGGR TimberWolfSC 7.0

avg min max avg min max

small 109719 109082 111474 95501 94280 96810

primary1 801217 794165 811950 736283 735290 737600

primary2 4257644 4234530 4276180 4007742 3987810 4017180

Summary - What’s New

☛ New simulated annealing algorithm which is based on a theoretically
derived annealing schedule.

☛ New method for statistical wiring estimation.

☛ New placement refinement method was developed for rectilinear cells which
spaces the cells at density avoiding the need for post-routing compaction.

☛ A new algorithm which uses previously generated constraints to maintain
the topology during placement refinement.

☛ A new detailed routing method has been developed which avoids the
classically difficult problem of defining channels for detailed routing, and in
addition, avoids the equally difficult problem of defining a routing order for
the defined channels.

☛ A new fully automatic placement and routing system has been developed for
mixed macro/standard cell designs.

☛ A new general net classification scheme for eliminating crosstalk between
signals.

What’s New (Continued)

☛ Six new algorithms for controlling time delay in an integrated circuit.

• A novel pin pair algorithm controls the delay without the need for user
path specification.

☛ A new generalized row-based global router suitable for standard cell, gate-
array, sea-of-gates, and FPGAs.

• It is the first row based global router to explicitly minimize chip area.

• This global router automatically adapts to technologies.

• Optimal feedthrough placement is accomplished using linear
assignment.

• Throughout the algorithm, timing constraints are taken into account.

• A unique vertical constraint minimization step eases the task of LEA
channel routers.

