
New Simulated Annealing Algorithm

Chapter 2

New Simulated Annealing Algorithm

2.1 Introduction

Simulated annealing is a technique for finding an optimal or near-optimal solution for

combinatorial optimization problems, or problems which have discrete variables. It was

proposed by Kirkpatrick, Gelatt, and Vecchi in 1983 and has been successfully applied to

circuit partitioning, placement, and routing in the physical design of integrated circuits.

The goal of a combinatorial optimization algorithm is to find the state of lowest cost

(or energy) from a discrete space of admissible configurations S. For each problem, a cost

function must be defined which maps each state to a real number denoting its cost. For

many problems, the number of possible states grows exponentially with the size of the

input. Optimizing becomes the process of searching for the state of lowest cost in a hyper-

dimensional space. With a large number of possible states to visit, the brute force method

of visiting all configurations becomes impractical. Clearly, we need a search strategy to

uncover the lowest cost solution in the jungle of states.

For many problems, the states of the configuration space are related. A problem exhib-

its optimal substructure if an optimal solution to the problem contains within it optimal

solutions to subproblems. These cases may be solved by either a greedy or a dynamic pro-

gramming algorithm. In a greedy-choice problem, a globally optimal solution can be

found by making a locally optimal (greedy) decision. The best choice is made at each

moment; at each step, we solve the ramifications of the previous choice. The choice made

by a greedy algorithm can not depend on future decisions or solutions to subproblems. In

dynamic programming, a choice is made at each step which may depend on the solutions

40

New Simulated Annealing Algorithm

to the subproblems. Solving an optimal substructure problem will require a greedy strat-

egy or dynamic programming depending on the nature of the problem [44].

Unfortunately, the physical design problems described in Chapter 1 do not exhibit

optimal substructure; each step of physical design has been shown to be NP-complete. If

we apply the greedy algorithm search strategy, we will usually get stuck in a local mini-

mum. This means that

(2.1)

where jmin is the local minimum state, and is the set of states reachable from the

state jmin. In many cases, there is a large disparity between the local minimum and the glo-

bal minimum cost. We need a search strategy which avoids local minima and finds the glo-

bal minimum. Simulated annealing is such a search strategy.

At the heart of the simulated annealing algorithm is the Metropolis Monte Carlo pro-

cedure which was introduced to provide an efficient simulation of a collection of atoms in

equilibrium at a given temperature [151]. The Metropolis procedure is the inner loop of

the simulated annealing algorithm as shown in Figure 2.1. While the greedy algorithm for-

bids changes of state that increase the cost function, the Metropolis procedure allows

moves to states that increase the cost function. Kirkpatrick, et al. suggested that the

Metropolis Monte Carlo method can be used to simulate the physical annealing process

and to solve combinatorial optimization problems [112]. They suggested adding an outer

loop which lowers the temperature from a high melting temperature in slow stages until

the system freezes, and no further changes occur. At each temperature, the simulation must

proceed long enough for the system to reach a steady state. The sequence of temperatures

and the method to reach equilibrium at each temperature is known as an annealing sched-

ule. They showed that this same technique can be applied to combinatorial optimization

problems if a cost function is used in place of energy, and the temperature is used as a con-

trol parameter.

c i() c jmin()≥ i∀ S jmin()∈,

S jmin()

41

New Simulated Annealing Algorithm

It has been shown that the simulated annealing algorithm, when started in an arbitrary

state and given an appropriate annealing schedule, will eventually converge to a global

optimum [153]. Although these results required an infinite amount of computation time

for the convergence guarantee, in practice, simulated annealing has been extremely suc-

cessful when applied to circuit partitioning and placement problems

[195][196][198][200][201]. It has outperformed all other known algorithms.

The essential elements of the simulated annealing algorithm are summarized below in

Figure 2.1. The algorithm consists of two loops: Each execution of the inner loop gener-

ates new configurations to be evaluated at constant temperature. The acceptance of a new

configuration j depends on the current temperature T and the change in cost between the

current configuration i and the proposed configuration j as presented in Figure 2.2. All

configuration changes which do not increase the cost are accepted as in any iterative

improvement algorithm, but moves with are accepted depending on the value of

 and the value of T. The Boltzmann distribution () which governs physical

annealing is used as the criteria for determining acceptance of states with increased cost.

In this simple formulation of simulated annealing, we designate that the inner loop is

repeated until the average value of the cost appears to have converged. As T is lowered

from a high value, large uphill moves are mostly rejected. As T is lowered further, moves

Algorithm simulated_annealing()

1 do
2 do
3 j = generate(i)

4 if accept(, T) then
5 i = j

6 until cost is in equilibrium

7 reduce(T)

8 until cost cannot be reduced any further

Figure 2.1 The basic simulated annealing algorithm.

∆C

∆C 0>

∆C exp
∆C–
T

----------- 
 

42

New Simulated Annealing Algorithm

with yet lower values of become largely rejected. In some sense, critical decisions

are made for those values of which are on the order of the value of T. Hence, sim-

ulated annealing operates in a pseudo-hierarchical fashion with respect to values

as T is decreased.

2.2 Previous Work

Although the Metropolis method is simple, effective and easily programmed, it has a

major drawback: at low temperatures, the running time is very long because many candi-

dates for moves are rejected before each move to a different configuration. To remedy this

inefficiency, various approaches have been proposed to speed the algorithm such as paral-

lel implementations [1][6][26][65][122][178]. Lam studied the problem and proposed a

statistical annealing schedule [123][124][125][126].

Lam's schedule is based on the observation that annealing is successful if the system is

kept close to thermal equilibrium as the temperature is lowered. However, to keep the sys-

tem in equilibrium at all times requires that the temperature decrements be infinitesimal; a

long time would have passed before the system is frozen, and annealing is stopped. From a

practical standpoint, a good annealing schedule must, therefore, achieve a compromise

between the quality of the final solution and the computation time. To determine when the

Algorithm accept(, T)

1 if then /* new cost is less than or equal to the old cost */

2 return(ACCEPT) /* accept the new configuration */

3 else
4 randomly generate a number r between 0 and 1

5 if r < then return(ACCEPT)

6 else return(REJECT)

Figure 2.2 The acceptance function for the simulated annealing algorithm.

∆C

∆C 0≤

exp
∆C–
T

----------- 
 

∆C 0>

∆C 0>

∆C 0>

43

New Simulated Annealing Algorithm

system is in equilibrium so that the temperature could be lowered, we need an equilibrium

criterion [123]. A system is close to equilibrium at temperature T if the condition

(2.2)

is satisfied, where is the average cost of the system, s = 1 / T is the inverse temperature,

and µ(s) and σ(s) are the mean and standard deviation of the cost if the system were in

thermal equilibrium at temperature T. The parameter λ, which can be made as small as

desired to ensure a good approximation of equilibrium, realizes the compromise between

the quality of the final solution and the computation time: the smaller the λ; the better the

quality of the final solution; the longer the computation time.

Simulated annealing has been applied to the placement and routing problem in the

TimberWolf system. Complete accounts of the implementations of simulated annealing

for earlier versions of the TimberWolf placement programs have been published

[195][196][198][200][201]. Improvements in the implementations of the cost function C,

the generation of new configurations (function generate in line 3 of Figure 2.1), and the

inclusion of the results of a theoretically derived statistical annealing schedule have been

responsible for the very significant reduction in the CPU time required by TimberWolf.

The next section presents the details of these algorithmic improvements.

2.3 New Annealing Schedule

We are now utilizing the results of a theoretically derived statistical annealing sched-

ule developed by Lam [125] [126] in a recent Ph.D. dissertation. In his work, Lam showed

that the optimum acceptance rate of proposed new configurations is approximately 44 per-

cent. In Lam's algorithm, a range limiter window (first described in [199]) is used to keep

the acceptance rate (denoted as α) as close as possible to 44 percent. (The range limiter

window bounds the magnitude of the perturbation (or move distance) from the current

state. The range limiter window size is designed to increase the acceptance rate at a given

µ s() λσ s()– c µ s() λσ s()+≤ ≤

c

44

New Simulated Annealing Algorithm

temperature. Changes in cost are on the order of the move distance. Therefore,

reducing the move distance yields smaller values and hence an elevated acceptance

rate.) In the beginning of the execution of this algorithm, the temperature T is set to a very

high value (effectively infinity). Even with the range limiter dimensions encompassing the

entire chip, the acceptance rate α approaches 100 percent. Since a further increase in range

limiter dimensions cannot decrease α, there clearly must be a region of operation for the

algorithm in which α is above the ideal value of 44 percent. Also, as T gets sufficiently

low, the range limiter dimensions reduce to their minimum values. Then, as α drops below

44 percent, there is no way for it to return to a higher level. It is therefore apparent that

there is a region of operation in which α falls from 44 percent toward zero as T approaches

zero. The anticipated three regions of operation (α above 0.44, α equals 0.44, and α below

0.44) are illustrated in Figure 2.3.

One disadvantage of the schedule developed by Lam is its inability to accurately pre-

dict when the execution of the algorithm will end from the beginning of the run. That is, it

is not known how many new configurations will be generated during the course of the exe-

cution of the algorithm. In an effort to gain a different perspective on Lam's theory, we

∆C()

∆C

1.0

region 1

0.44

region 2

region 3

generated new configurations

acceptance rate α

Figure 2.3 Anticipated plot of the acceptance rate versus generated new configurations.

45

New Simulated Annealing Algorithm

measured α versus generated new configurations for executions on several industrial cir-

cuits. One objective was to determine the percentage of the run (that is, the percentage of

the total new configurations generated) devoted to each of the three regions of operation.

These percentages were remarkably similar for the very wide range of circuit sizes which

were tested. A typical plot is shown in Figure 2.4.

We discovered that for region 1 (which encompasses approximately 15% of the run) α

versus generated new configurations could be modeled by an exponential function. This

function has a peak value of 1.0, and passes through the point where α first reduces to

0.44. Furthermore, we found that region 3 could also be modeled by an exponential func-

tion with peak value 0.44 and minimum value 0.0. In region 2, the acceptance rate is flat,

but we discovered that the decrease in the range limiter window dimensions as a function

of generated new configurations can also be modeled by exponential functional form. That

1.0

0.44

generated new configurations

acceptance rate α

Figure 2.4 Typical measured acceptance rate versus generated new configurations as obtained from
experiments conducted on several industrial circuits, showing the percentage of the run spent in
each region of operation.

15% 50% 35%

46

New Simulated Annealing Algorithm

all three regions can be modeled by exponential functions is not surprising in light of the

use of the (exponential) Boltzmann-like factor used to govern acceptance or rejection of

new configurations.

We define an iteration (represented by I where) to correspond to an in-

terval along the horizontal axis in Figure 2.4. That is, new configurations are gener-

ated during iteration I. An iteration defines a set of moves during which the range

limiter window dimensions remain constant.

 In simulated annealing, the more new configurations generated during the course of a

run, the higher the probability of achieving a better solution. However, our extensive

experimentation suggested the existence of a diminishing return on the number of new

configurations generated. Therefore, a default number of moves can be determined for

which the best results can be obtained with high probability. The default total number of

moves during a run is set to:

(2.3)

where is the number of cells. In our implementation, we set equal to 150 itera-

tions. Therefore:

(2.4)

Note that the range limiter dimensions are actually changed 50% of 150 times, or 75

times during the course of a run (that is, its dimensions only change during region 2 of the

operation of the annealing algorithm).

Since we know that the acceptance rate behavior described in Figure 2.3 along with

the default values of Imax and Nmax yield close to the best possible results for simulated

annealing, we force the algorithm to strictly obey that acceptance rate behavior. That is,

for each iteration I (I varies from 1 to Imax), we compute the target acceptance rate () as

1 I Imax≤ ≤

Nmax

Nmax

total_moves 1500Nc
4 3⁄=

Nc Imax

Nmax 10Nc
4 3⁄=

α I
T

47

New Simulated Annealing Algorithm

shown in Figure 2.5. To ensure that significant further reductions in the cost are not possi-

ble, we set the target acceptance rate to be below one percent at the last iteration (Imax).

We force the actual acceptance rate to track the target acceptance rate by using nega-

tive feedback control on the temperature T:

(2.5)

where K is a damping constant used to stabilize the control of the value of Τ (in our imple-

mentation, a very suitable value of K is 40). T is updated every update_limit moves (as

defined in the description of our simulated annealing algorithm in Figure 2.6). Note that T

can increase as well as decrease as the execution of the algorithm proceeds, and the range

1.0

0.44

generated new configurations

acceptance rate α

Figure 2.5 Target acceptance rate versus iteration.

0.15Imax 0.65Imax
1.0Imax

T 1
α I α I

T–

K
------------------– T=

48

New Simulated Annealing Algorithm

limiter window dimensions decrease exponentially as a function of the number of itera-

tions. In Lam's schedule by contrast, T decreases monotonically but the range limiter win-

dow dimensions fluctuate up or down. Clearly these two parameters are closely related. It

is sufficient to dictate the functional form for either one, and let the other parameter adapt

to monitored conditions.

Based on extensive measurements, our new interpretation of Lam's schedule did not

show a difference in placement quality for a given execution time as compared to Lam's

Algorithm simulated_annealing()

1 /* set current configuration equal to initial configuration */

2 /* sufficiently sample configuration space to ascertain value of T

yielding an initial acceptance rate slightly below 100 percent */
3

4 while do
5 /* N is the number of moves attempted so far during iteration I */

6 set_range_limiter_size(I) /* sets range limiter window dimensions */

7 /* update counter */

8 while do
9

10

11 if up = update_limit then /* we need to update the temperature T */

12 /* reset the counter */

13 if then
14 raise_temp(T)

15 else if then
16 lower_temp(T)

17 Y = generate(X) /* propose a new configuration */

18 /* compute the cost change */

19 if accept(, T) then
20 /* accept the new configuration to be the current config. */

21

Figure 2.6 Our simulated annealing algorithm. The cumulative measured acceptance rate during
iteration I is ; the target acceptance rate at iteration I is . The algorithm will execute a total
of iterations.

X0

X X0←
T set_initial_T()←

α1
I 1←

I Imax≤
N 0←

up 0←
N Nmax<

up up 1+←
N N 1+←

up 0←
α I α I

T<

α I α I
T>

∆C C Y() C X()–=

∆C

X Y←
I I 1+←

α I α I
T

Imax

49

New Simulated Annealing Algorithm

original version. Our new approach generates a fixed number of moves for a circuit of a

given size, and therefore, the number of iterations is known a priori.

2.4 Conclusions

We have presented a new simulated annealing algorithm which is based on a theoreti-

cally derived annealing schedule. The new annealing schedule yields results which are

comparable to those obtained with Lam’s statistical schedule. This algorithm is the basis

for the placement and partitioning algorithms presented in this thesis.

