
Efficient Timing Closure Without
Timing Driven Placement and Routing

Miodrag Vujkovic, David Wadkins, Bill Swartz* and Carl Sechen

Dept. of Electrical Engineering
University of Washington

Seattle

*InternetCAD.com
Dallas, TX

Outline
• Prior Work
• Problem domain
• Why timing closure is difficult
• Objectives of our design flow
• Cell library
• Variable die placement and routing
• Clock tree insertion
• Energy-delay plots
• Timing convergence design flow details
• Results

Prior Work
1. C.K. Cheng, “Timing Closure Using Layout Based Design Process”,

(www.techonline.com/community/tech_topic/timing_closure/116).
2. R. Bryant, et al., “Limitations and Challenges of Computer-Aided Design Technology for CMOS

VLSI”, Proc. IEEE, Vol. 89, No.3, March 2001.
3. O. Coudert, “Timing and Design Closure in Physical Design Flows”, Proc. of the International

Symposium on Quality Electronic Design (ISQED), 2002.
4. S. Hojat, and P. Villarrubia, “An Integrated Placement and Synthesis Approach for Timing Closure

of PowerPC TM Microprocessors”, Proc. IEEE Int. Conference on Computer Design (ICCD), pp.
206-210, October 1997.

5. B. Halpin, N. Sehgal, and C.Y. R. Chen, “Detailed Placement with Net Length Constraints”, Proc.
of the 3rd IEEE Int. Work. on SOC for Real-Time Applications, 2003.

6. S. Posluszny et al., “Timing Closure by Design, A High Frequency Microprocessor Design
Methodology”, Proc. of Design Automation Conf. (DAC), pp. 712-717, June 2000.

7. G. Northrop, and P.F. Lu, “A Semi-Custom Design Flow in High-Performance Microprocessor
Design”, Proc. of Design Automation Conference (DAC), pp. 426-431, June 2001.

8. E. Yoneno, and P. Hurat, “Power and Performance Optimization of Cell-Based Designs with
Intelligent Transistor Sizing and Cell Creation”, IEEE/DATC Electronic Design Processes
Workshop, Monterey, CA, April 2001.

9. M. Hashimoto, and H. Onodera, “Post-Layout Transistor Sizing for Power Reduction in Cell-Base
Design”, IEICE Trans. Fund., Vol.E84-A, pp. 2769-2777, November 2001.

Problem Domain
• The focus of this paper is timing closure at the block level

– e.g. up to 50k cells -- or library instances
– but certainly scaling up as tools (gate sizers) improve

• The approach certainly can be applied hierarchically, to obtain similar
benefits for much larger circuits

The Challenge!
• What makes the timing closure problem particularly difficult is the

high variability in the loading of wires
• We measured the capacitance per unit length for all nets for a wide

variety of circuits in the 0.18um TSMC technology
– varied from about 0.02 fF/um to about 0.7 fF/um
– a 35X variance!

• The value you get for a particular net is only ascertained AFTER
detail routing

• There is no way for a timing driven placement approach to be
effective in meeting timing
– Predicting useful gate loads seems impossible

Design Flow Objectives
1. Absolutely minimize energy (power) for a specific delay target
2. Rapid timing convergence

Concepts Behind the Objectives
1. Absolutely minimize energy (power) for a specific delay target

– Use only combinational gates that are power efficient
– Provide a very wide range of drive strengths and beta ratios for this limited set

of gates
– Transistor area only used if absolutely necessary to meet delay constraint

2. Rapid timing convergence
– Since timing analysis must be done while gate sizing (actually, gate selection)

anyway, ONLY do TA there!
– Since wire loads are crucial to power & delay, want placer to only worry about

wire lengths
– Placer objective function is not concerned with: congestion, timing, overlap,

etc., rather, only wire length
– Enables MUCH lower wire lengths, hence power & delay
– Also need effective ECO mode, featuring “stable” placers and routers (about the

same wire lengths after an ECO iteration)

Outline
• Prior Work
• Problem domain
• Why timing closure is difficult
• Objectives of our design flow
• Cell library
• Variable die placement and routing
• Clock tree insertion
• Energy-delay plots
• Timing convergence design flow details
• Results

Cell Library
• A cell library consisting of 14 different combinational functions appears

to be optimal for minimizing power for a specific delay (ICCAD 2002)
– INV, NAND2-4, NOR2-3, AOI/OAI12, AOI/OAI22, XOR, MUX2:1
– FA (sum), FA (carry)

• Pass-transistor versions of XOR and FA also available
– pass transistor cells yield higher speed, but are higher power

• Crucial to provide WIDE range (and number) of drive strengths
• Even more crucial to provide very wide range (and number) of beta

ratios

Cell Sizes
• All channel-connected nMOS devices for a cell are sized as a group
• All channel-connected pMOS devices are sized as a separate group
• Series/parallel cells have only one group of nMOS devices and one

group of pMOS devices while pass-transistor cells can have several
nMOS/pMOS transistor groups

• For larger widths, the sizes correspond to an integral number of half
folds (i.e. transistor widths are 1.0, 1.5, 2.0, 2.5, etc., times the
maximum non-folded size)

• For a 0.18um process, the allowable sizes for both nMOS and pMOS
devices range from 1.06um to 13.78um, in steps of 0.53um
– From 0.42um to 1.06um, approximately in steps of 0.13um

• Total number of instances of 14 combinational functions: about 1300

Cell Library (cont’d)
• Fixed library approach!

– library is characterized and validated via fabrication
• During synthesis (only), the library is enhanced to include various cells

that are “compounds” of the 14 base functions
– greatly enhances flexibility during synthesis without using power inefficient gates,

and without enlarging the physical library

Parameterized Cell Layout Generator

• Foundry-independent, parameterized, automatic cell layout generator
developed

• Separate generator for each of the 14 combinational cell types plus
DFF cells

• Cell layouts specially tuned to yield best possible placement and
routing density

NAND2 Gate
• nMOS size:

0.42u to
1.06u within
one fold

• pMOS: from
0.42 u to
1.56u within
one fold

 Figure 9. Single contact method allows for a large
range of transistor sizes with no change in routing

Compounding Cells

• Gates (base functions) comprising a compound cell are sized
separately
– Improves power efficiency

• However, great benefit in HARDWIRING these gates together:
– One circuit: # of nets to route decreased from 8000 to 5000 from hardwiring

the compound cells
– 2nd circuit: # of nets to route decreased from 19,000 to 13,500 from

hardwiring the compound cells
– Not surprisingly, in each case the routing area decreased by 60%!

Compound Cell Example: AND2

Figure 10. AND 2 Cell

Example of Compound Cell

•AOI2BB2 cell

cells separately
optimized

Another Compound Cell Example

FULL ADDER
a
b

cin

s
cout

s

coutCarry generator

Sum generator
a
b

cin

a
b

cin

Cellgen Cells
xor2p mux2:1p and2

oai2bb1 aoi21 addfs

Outline
• Prior Work
• Problem domain
• Why timing closure is difficult
• Objectives of our design flow
• Cell library
• Variable die placement and routing
• Clock tree insertion
• Energy-delay plots
• Timing convergence design flow details
• Results

Placement Issues
• All timing analysis resides within the cell sizer, where the cells have their

sizes optimized for the actual extracted wire loads
• A critical advantage of this new approach is that the placement tool can

focus on only a single objective, that of minimizing wire length
– But we don’t allow any single net from becoming “too long” … by providing an upper

bound

• We need an approach that generates placements having the lowest
possible total wire lengths

Placement Issues (cont’d)
• Based on our experience, the iTools placer from InternetCAD.com yields

lower total wire lengths compared to other EDA placers
– For the smaller PEKO benchmarks (having known optimal wire lengths), iTools

yields results around 10% above optimal
– Other placers are in the 40% above or more range

• Run time is not an issue
– Run time around 3-4 hrs for 20k cells for one PC
– Parallel mode gives linear speedup with # of PCs or processors

• Also, since resizing cells perturbs the initial global placement, we need
the effective ECO (engineering change order) mode in iTools
– Want about the same wire lengths after cells have been resized
– Cells are only permitted to move up or down one row, and a limited distance left or

right

Routing: Fixed Die vs. Variable Die
• The major EDA companies and much of academic research for more

than 10 years have employed what are essentially gate array (or fixed
die) routers for standard cell circuits

• Hardly makes sense since the die is programmable on all mask layers in
the standard cell style …

• Variable die routers create routing space wherever needed in order to
complete the routing
– variable die routers inherently complete 100% of the routing whereas in fixed die

routing this guarantee is absent
• The routing quality obtained from a fixed die router is highly dependent

on the quality of the user
– numerous iterations to eliminate unneeded routing space and/or to add needed

routing space

Fixed Die Routers are Bullied by Congestion
• If a congested area lies between 2 pins, the router must detour around it
• Often this net lies on a critical path and now the load for the driving gate

is dramatically larger than before, causing timing to diverge
– Gate sizing creates a lot of critical paths …

• Furthermore, resizing a design often dramatically changes the congestion
landscape, causing nets to become much longer (or shorter) than
previously (lack of “stability”)

• It is our experience that a fixed die router renders our flow to be largely
ineffective in accomplishing timing closure

Congested Area

Variable Die Router
• Each net is routed in near minimum length, every time
• Congestion has no impact
• It simply creates space (e.g. increasing row separations or adding

feedthroughs) wherever needed to wire up a net using near minimum
total wire length

• Thus, a minor placement change, such as what might occur after resizing
and an ECO placement run, will yield almost the same lengths for each
net

• Great “stability”!

Variable Die Router (cont’d)
• In our flow, we use the iTools gridded variable die router

– To our knowledge, this is the only commercial (or academic) variable die router
available

– While a non-gridded version is available, the gridded version is faster and our cell
library is gridded anyway

– Parallel algorithm enables linear speedup with # of PCs or processors

Leading EDA Router vs. iTools Routing
• For the same netlist (and library of cells) as well as the same placement,

the iTools layout is 33% smaller than the leading fixed die router!
• This design (NCO) has about 8,000 library cells

Outline
• Prior Work
• Problem domain
• Why timing closure is difficult
• Objectives of our design flow
• Cell library
• Variable die placement and routing
• Clock tree insertion
• Energy-delay plots
• Timing convergence design flow details
• Results

Clock Tree Insertion

• In traditional flows, clock tree synthesis is performed after placement
• This greatly disturbs cell placement, and consequently wire lengths,

making timing closure almost impossible

Simultaneous Clock Tree Insertion
• We augmented the iTools placer to add a

hierarchical H-tree of symmetrical inverters
during the actual placement process

• Just like the rest of the flow, the clock tree
synthesis is a refinement process

• Initially, iTools equalizes the transistor loads
on the leaf inverters

– however, it cannot assure an equal RC wire load to
each flip-flop during placement since routing is yet
to be performed

• After initial global placement, each inverter in
the tree is sized using logical effort, based on
the capacitive loads

Minimizing and Using Skew

• The result is that the fanout capacitance is constant for each leaf
inverter, which in turn tends to equalize the rise and fall time for each
inverter and reduces the overall skew

• However, sizing cannot compensate for the skew between flip-flop
loads due to RC effects

• The residual clock skews are accurately simulated using Hspice on the
Assura (RC) extraction of the clock tree directly to the individual flip-
flop loads

• This skew information is incorporated into the gate sizing step, where it
is used to optimize the timing

Outline
• Prior Work
• Problem domain
• Why timing closure is difficult
• Objectives of our design flow
• Cell library
• Variable die placement and routing
• Clock tree insertion
• Energy-delay plots
• Timing convergence design flow details
• Results

Two Modes of Operation
1. Energy (or power) vs. delay plots

– Energy is minimized for several delay points or a delay range
– E vs. D plots can be combined hierarchically, to handle large circuits

2. Minimize energy for specific delay

Generating P vs. D Plots
Currently use AMPS gate sizer from Synopsys (not really intended for
this purpose)
But, power and delays are fairly accurate
AMPS is allowed to use only the cell sizes in the library

delay (ns)

power
(mW)

25

40
35

5.2

30

45

55

65

5.4 5.65.86.0 6.3 7.06.6 7.4

pow-req. mode run1

pow-req. mode run3

pow-req. mode run6
.
.
.

del-
req.
run1

del-
req.
run3

del-
req.
run6

. . .

optimal curve

optimal
point

Outline
• Prior Work
• Problem domain
• Why timing closure is difficult
• Objectives of our design flow
• Cell library
• Variable die placement and routing
• Clock tree insertion
• Energy-delay plots
• Timing convergence design flow details
• Results

Timing Convergence Flow - Overview
1. Synthesis runs using the latest Synopsys products (DC Ultra, BOA,

Power Compiler)
2. AMPS runs to determine P vs. D plots (using a wire load model)
3. Select one or more P,D points and execute iTools placement and

routing
4. Extract actual wire loads (e.g. Assura RCX) and determine P, D
5. Re-run AMPS for one or more of the layout points
6. iTools ECO place and route
7. Extract actual wire loads and determine P, D
8. If necessary, repeat 5-7 once

Timing Closure Design Flow - Details

1. Synthesis using Synopsys DC
– 25-30 iterations or until desired improvement
– DC-ultra optimization (Behavioral Optimization of Arithmetic)
– Power optimization (using Power Compiler)
– Synthesis library includes 156 combinational cells (each decomposes into

one or more of the 14 basic functions) and 20 FFs (each decomposes into
one of the 5 FFs in our library)

2. Add wire load model to synthesized netlists
– 17 um/FO (3.4 fF/FO) for TSMC .18um

Timing Closure Design Flow (cont’d)

k2

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
delay (ns)

DC
library
(176
cells)

3. Delay/power analysis (Pathmill/NanoSim)
4. “Optimized” curve extraction after synthesis

Timing Closure Design Flow (cont’d)
5. Select point(s) from the “optimized” curve (e.g., target delay,

min PD point, min PDA point, or a set of points spanning the
P-D curve)

• Want to run AMPS with the wire load model for certain points

k2

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
delay (ns)

DC - library
(176 cells)

Pick Min PD point

Timing Closure Design Flow (cont’d)
6. Convert compound cells to the set of 14 base functions in our

library
Full adders are pass transistor for high speed portion of P-D curve;
otherwise, static CMOS versions are used

Timing Closure Design Flow (cont’d)
7. Initial Power/Delay optimization using AMPS
8. “Optimized” P-D curve extraction

k2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.2 1.4 1.6 1.8 2 2.2 2.4

delay (ns)

po
w

er
 (m

W
)

Initial AMPS
P/D optimal
curve

Timing Closure Design Flow (cont’d)
9. Choose desired points from one or more delay sub-ranges

– Divide delay range in selected number of sub-ranges (e.g. 5 sub-ranges)
– Choose one point from each sub-range which satisfies specified criteria (e.g. min

PD)
– Generate netlist for each of the (e.g. 5) designs
– Netlists corresponding to same synthesis runs differ only with respect to cell sizes

k2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.2 1.4 1.6 1.8 2 2.2 2.4
delay (ns)

Initial AMPS
optimization

selected set of points

Timing Closure Design Flow (cont’d)
10. Extract needed cell layouts from library
11. High quality (iTools) placement run for each point
12. iTools routing (variable die)
13. Accurate hierarchical parasitic (RC) extraction using Assura RCX or

Star RCXT
14. Logical-effort-based clock-tree sizing
15. Detailed skew measurements to the actual FF loads, including

distributed RC parasitics
16. Delay/power/area measurements for each generated layout
17. If converged (usually need 1 or at most 2 iterations), stop; else

continue

Example - Initial Layout

k2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.2 1.4 1.6 1.8 2 2.2 2.4
delay (ns)

Initial AMPS
optimization

Layout -
iteration 0

selected set of points

Timing Closure Design Flow (cont’d)
18. New AMPS optimizations for one or more layout points
19. “Optimized” curve extraction over all optimizations
20. Re-execute steps 9-17 where step 11 is now an ECO-based placement run (iTools)

9. Choose desired points from one or more delay sub-ranges
10. Extract needed cell layouts from library
11. High quality (iTools) placement run for each point
12. iTools routing (variable die)
13. Accurate hierarchical parasitic (RC) extraction using Assura RCX or Star RCXT
14. Logical-effort-based clock-tree sizing
15. Detailed skew measurements to the actual FF loads, including distributed RC parasitics
16. Delay/power/area measurements for each generated layout
17. If converged (usually need 1 or at most 2 iterations), stop; else continue

Selected Points after AMPS Iteration 1

k2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

1.2 1.4 1.6 1.8 2 2.2 2.4

delay (ns)

po
w

er
 (m

W
)

0.95

1.05

1.15

1.25

1.35

1.45

PD
P

 -AMPS
iteration 1

Selected
points

.PDP vs
 -delay
iteration 1

P vs. D after Layout Iteration 1

k2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

1.2 1.4 1.6 1.8 2 2.2 2.4

delay (ns)

po
w

er
 (m

W
)

0.95

1.05

1.15

1.25

1.35

1.45

PD
P

AMPS PD
iteration-
1

Selected
pts from
AMPS

 -Layout
iteration 1

.PDP vs
 -delay
iteration 1

Selected points after layout

P vs. D after Layout Iteration 2

k2

0.3
0.4
0.5
0.6
0.7

0.8
0.9

1
1.1
1.2

1.2 1.4 1.6 1.8 2 2.2 2.4
delay (ns)

po
w

er
 (m

W
)

0.95
1
1.05
1.1
1.15
1.2
1.25
1.3
1.35
1.4
1.45

PD
P

AMPS PD -
iteration 2

Layout
iteration 2

selected
pts from
AMPS

PDP vs.
delay -
iteration 2

Layout Points after each Iteration

Delay-Power curves - k2

0.4

0.5

0.6

0.7

0.8

0.9

1

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

delay (ns)

po
w

er
 (m

W
)

Initial layout

Layout
iteration 1

Layout
iteration 2

Improvement in PDP for k2 Benchmark

0 .9

0 .9 5

1

1.0 5

1.1

1.15

1.2

1.2 5

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2 .1 2 .2
delay (ns)

Init ia l layo ut Layo ut iterat io n 1 Layo ut iterat io n 2

Benchmark des

des

4
6
8

10
12
14
16
18
20
22
24

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1
delay (ns)

po
w

er
 (m

W
)

10
15
20
25
30
35
40
45
50
55
60

PD
D

 (m
W

*n
s^

2) -static176
DC

.PDD vs
delay - DC

Initial Layout - des

des

8
9

10
11
12
13
14
15
16
17
18

1.15 1.25 1.35 1.45 1.55 1.65 1.75

delay (ns)

po
w

er
 (m

W
)

16
17
18
19
20
21
22
23
24
25
26

PD
D

 (m
W

*n
s^

2)

 -AMPS
iteration 0

Selected
points from
AMPS run
 -Layout
 iteration 0

.PDD vs
 -delay
iteration 0

Iteration 1 - des

des

9

10
11

12

13

14
15

16

1.25 1.35 1.45 1.55

delay (ns)

po
w

er
 (m

W
)

23

24
25

26

27

28
29

30

PD
D

 (m
W

*n
s^

2)

 -AMPS
iteration 1

Selected
points from
AMPS run
 -Layout
 iteration 1

.PDD vs
 -delay
iteration 1

Iteration 2 - des

des

10

11

12

13

14

15

16

1.2 1.3 1.4 1.5 1.6
delay (ns)

po
w

er
 (m

W
)

23

24

25

26

27

28

29

PD
D

 (m
W

*n
s^

2)

 -AMPS
iteration 2

Selected
points from
AMPS run

 -Layout
 iteration 2

.PDD vs
 -delay
iteration 2

PDP vs. Delay

des

17

18

19

20

21

22

1.2 1.3 1.4 1.5 1.6 1.7 1.8

delay (ns)

PD
P

Initial layout

Layout
iteration 1

Layout
iteration 2

DC + Artisan + SE vs. Our Flow

des

8

10

12

14

16

18

20

22

1.1 1.2 1.3 1.4 1.5 1.6 1.7

delay (ns)

po
w

er
 (m

W
)

Layout Silicon
Ensemble + DC

Our flow

32b FIR after DC

fir_mod

12

14

16

18

20

22

24

26

5.5 6 6.5 7 7.5 8 8.5 9 9.5
delay (ns)

po
w

er
 (m

W
)

800

850

900

950

1000

1050

1100

1150

PD
D

static176
DC-

.PDD vs
delay

• 32b FIR Filter

32b FIR: Initial Layout

fir_mod

8
9

10
11
12
13
14
15
16
17
18

6.5 7 7.5 8 8.5 9 9.5

delay (ns)

po
w

er
 (m

W
)

 -Layout
iteration 0

Initial AMPS
iteration (no
)clock tree

Selected
point from
initial AMPS
iteration

• 32b FIR Filter

32b FIR – Iteration 1

fir_mod

13
14
15
16
17
18
19
20
21
22

7.5 8 8.5 9 9.5 10
delay (ns)

po
w

er
 (m

W
)

900

1100

1300

1500

1700

PD
D

 -AMPS
iteration 1

Selected
points

 -Layout
iteration 1

PDD vs. delay

• 32b FIR Filter

32b FIR – Iteration 2

fir_mod

8

10

12

14

16

18

8 8.5 9 9.5delay (ns)

po
w

er
 (m

W
)

1100

1200

1300

1400

1500

1600

PD
D

 -AMPS
iteration 2

Selected
points

 -Layout
iteration 2

.PDD vs
delay

• 32b FIR Filter

32b FIR: PDP vs. Delay

fir_mod

140

142.5

145

147.5

150

152.5

155

8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2
delay (ns)

PD
P

Initial layout

Layout
iteration 1

Layout
iteration 2

• 32b FIR Filter

DC + Artisan + SE vs. Our Flow

fir_mod

12
14
16
18
20
22
24
26
28

5.5 6 6.5 7 7.5 8 8.5 9 9.5
delay (ns)

po
w

er
 (m

W
) Layout Silicon

Ensemble + DC

Layout - our
flow

• 32b FIR Filter

Energy-Delay-Squared Results

Minimum EDD Design Initial iteration 1 iteration 2
K2 1.7 1 1.6 9% 1.4 21%
C5315 17.8 1 16.6 8% 14.5 23%
C7552 29.7 1 25.5 17% 23.2 28%
32-stage FIR 1374 1 1208 14% 1190 15%
Avg improv. 1 12% 22%

Conclusion
• Design flow from Verilog/VHDL to layout mitigates the timing closure

problem, while requiring no timing driven placement or routing tools
• Timing issues are confined to the cell sizer, allowing the placement

algorithm to focus solely on wire lengths, resulting in superior layout
densities and much lower energy (power)

• The key enablers are:
– Optimal library composition (power efficient gates only)
– Huge number of drive strengths and beta ratios
– Effective scheme to generate energy (power) vs. delay plots
– Lowest wire length placement
– Variable die routing that allows each net to be routed in the shortest possible

length and guarantees 100% routing completion in the smallest possible area
– Integrated cell placement, routing, gate sizing, and clock tree insertion
– Effective incremental (ECO) placement that preserves net lengths from one

iteration to the next (made possible by the “stability” of the variable die router)

Acknowledgements
• We are very grateful for the financial support provided by:

– Intel Corporation
– Boeing/DARPA (MSP program)
– MARCO/C2S2
– National Science Foundation (NSF)
– NSF Center for the Design of Digital and Analog ICs (CDADIC)
– SRC (early on)
– Texas Instruments
– AMD

	Efficient Timing Closure Without Timing Driven Placement and Routing
	Outline
	Prior Work
	Problem Domain
	The Challenge!
	Design Flow Objectives
	Concepts Behind the Objectives
	Outline
	Cell Library
	Cell Sizes
	Cell Library (cont’d)
	Parameterized Cell Layout Generator
	NAND2 Gate
	Compounding Cells
	Compound Cell Example: AND2
	Example of Compound Cell
	Another Compound Cell Example
	Cellgen Cells
	Outline
	Placement Issues
	Placement Issues (cont’d)
	Routing: Fixed Die vs. Variable Die
	Fixed Die Routers are Bullied by Congestion
	Variable Die Router
	Variable Die Router (cont’d)
	Leading EDA Router vs. iTools Routing
	Outline
	Clock Tree Insertion
	Simultaneous Clock Tree Insertion
	Minimizing and Using Skew
	Outline
	Two Modes of Operation
	Generating P vs. D Plots
	Outline
	Timing Convergence Flow - Overview
	Timing Closure Design Flow - Details
	Timing Closure Design Flow (cont’d)
	Timing Closure Design Flow (cont’d)
	Timing Closure Design Flow (cont’d)
	Timing Closure Design Flow (cont’d)
	Timing Closure Design Flow (cont’d)
	Timing Closure Design Flow (cont’d)
	Example - Initial Layout
	Timing Closure Design Flow (cont’d)
	Selected Points after AMPS Iteration 1
	P vs. D after Layout Iteration 1
	P vs. D after Layout Iteration 2
	Layout Points after each Iteration
	Improvement in PDP for k2 Benchmark
	Benchmark des
	Initial Layout - des
	Iteration 1 - des
	Iteration 2 - des
	PDP vs. Delay
	DC + Artisan + SE vs. Our Flow
	32b FIR after DC
	32b FIR: Initial Layout
	32b FIR – Iteration 1
	32b FIR – Iteration 2
	32b FIR: PDP vs. Delay
	DC + Artisan + SE vs. Our Flow
	Energy-Delay-Squared Results
	Conclusion
	Acknowledgements

